
HAL Id: hal-00950050
https://hal.inria.fr/hal-00950050

Submitted on 20 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rational graphs trace context-sensitive languages
Christophe Morvan, Colin Stirling

To cite this version:
Christophe Morvan, Colin Stirling. Rational graphs trace context-sensitive languages. Mathemat-
ical Foundations of Computer Science, Aug 2001, Marianske Lazne, Czech Republic. 2001. <hal-
00950050>

https://hal.inria.fr/hal-00950050
https://hal.archives-ouvertes.fr

Rational graphs trace context-sensitive

languages

Christophe Morvan1 and Colin Stirling2

1 IRISA, Campus de Beaulieu, 35042 Rennes, France
christophe.morvan@irisa.fr

2 Division of Informatics, University of Edinburgh
cps@dcs.ed.ac.uk

Abstract. This paper shows that the traces of rational graphs coincide
with the context-sensitive languages.

1 Introduction

Infinite transition graphs have become a focus of attention recently. For example,
the behaviour of an infinite state system is an infinite transition graph, and re-
searchers have examined when property checking and equivalence checking such
graphs is decidable [3]. Muller and Schupp pioneered the study of infinite tran-
sition graphs by examining the graphs of pushdown automata [10]. They were
interested in extending Cayley graphs to structures that are more general than
groups. Courcelle defined a more extensive class, the equational graphs, using
deterministic graph grammars [5]. More recently, Caucal constructed a richer
class, the prefix-recognisable graphs [4], using transformations of the complete
binary tree [4]: such a graph is characterised by an inverse rational substitu-
tion followed by a rational restriction of the complete binary tree. Caucal also
provided a mechanism for generating the prefix-recognisable graphs, using finite
sets of rewrite rules. The first author produced an even richer family, the ra-
tional graphs, again using transformations of the complete binary tree [9]: the
characterisation involves an inverse linear substitution followed by a rational re-
striction of the complete binary tree. He also showed that rational graphs are
generated by finite-state transducers whose words are the vertices of a graph.

There is a natural relation between transition graphs and languages, namely
the trace. A trace of a path in a transition graph is its sequence of labels. Relative
to designated initial and final sets of vertices, the trace of a transition graph is the
set of all path traces which start at an initial vertex and end at a final vertex.
For example, the regular languages are the traces of finite transition graphs.
For richer families of languages one needs to consider infinite transition graphs.
The context-free languages are the traces of the transition graphs of pushdown
automata. This remains true for both equational and prefix-recognisable graphs.
The next family of languages in the Chomsky hierarchy is the context-sensitive
languages. Although they have been studied from a language theoretic point

of view, (see [8], for example), only recently have their canonical graphs been
examined [7].

In this paper we prove that the traces of rational graphs (relative to regular
initial and final vertex sets) coincide exactly with the context-sensitive languages.
In Section 2 we describe the rational graphs. In Section 3 we prove that the traces
of rational graphs are context-sensitive, using linear bounded Turing machines.
Finally, in Section 4 we prove the converse inclusion, using a normal form due
to Penttonen for context-sensitive languages [11].

2 Rational graphs

In this section we concentrate on a presentation of rational graphs using finite
state transducers that generate them. For a more detailed introduction to ratio-
nal graphs, their basis using partial semigroups and rational relations, and their
characterization in terms of transformations of the complete binary tree, see [9].

Assume a finite alphabet A and a finite set of symbols X . A vertex of a
transition graph is a word u ∈ X∗, and a transition has the form (u, a, v), which

we write as u
a
−→ v, where a ∈ A and u, v are vertices. A transition graph

G ⊆ X∗ ×A×X∗ is a set of transitions.
A transducer is a finite state device that transforms an input word into an

output word in stages, see [1, 2]. At each stage, it reads a subword, transforms

it, and changes state. A transition of a transducer has the form p
u/v
−−→ q where p

and q are states and u is the input subword and v is its transformation. For our
purposes, both u and v are elements of X∗, and final states of the transducer
are labelled by subsets of A.

Definition 2.1. A labelled transducer T = (Q, I, F,E, L) over X and A, is a
finite set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q, a
finite set of transitions E ⊆ Q×X∗×X∗×Q and a labelling L : F → 2A.

A transition u
a
−→ v is recognized by a labelled transducer T if there is a

path in T , p0
u1/v1
−−−−→ p1

u2/v2
−−−−→ . . .

un−1/vn−1

−−−−−−−→ pn−1
un/vn
−−−−→ pn, with p0 ∈ I and

pn ∈ F and u = u1 . . . un and v = v1 . . . vn and a ∈ L(pn). Labelled transducers
provide a simple characterization of rational graphs, see [9]. Here we treat the
characterization as a definition.

Definition 2.2. A graph G ⊆ X∗×A×X∗ is rational if, and only if, G is
recognized by labelled transducer.

A transducer is normalised if all its transitions have the form, p
u/v
−−→ q, where

|u|+ |v| = 1. It is straightforward to show that any rational graph is generable
from a normalised transducer.

For each a in A, the subgraph Ga is the restriction of G to transitions labelled
a. If G is rational then so is Ga, and we let Ta be the transducer that recognises
Ga. If u is a vertex of G then Ga(u) is the set of vertices {v |u

a
−→ v}.

Example 2.3. The transition graph, below on the right, is generated by the
transducer, below on the left.

1/1

0/0

r1

r2

r3

a

b

c

p

1/1

ε/0

0/1

0/0
0/1

0/0

1/ε
1/⊥

1/1q2

q1

c

c

a

a

b

b

b

b

b

b
00

01

11

001

011

111

000

0

1

ε a

c⊥

For example, 001
b
−→ 011 is recognized because of the following path, p

0/0
−−→

q1
0/1
−−→ r2

1/1
−−→ r2 and b is associated with the final state r2.

A path in a graph G is a sequence of transitions u0
a0−→ u1

a1−→ . . .
an−−→ un. If

x = a0a1 . . . an we write u0
x
−→ un and we say that x is the trace of this path.

The trace of a graph G, relative to a set I of initial vertices and a set F of final
vertices, is the set of traces of all paths between vertices in I and vertices in F .

L(G, I, F) := {x | ∃s ∈ I ∃t ∈ F, s
x
−→ t}

In other words, the trace of a graph is “the language of its labels”. In this paper,
we are interested in the trace of a rational graph relative to regular vertex sets
I and F .

In Section 4 we shall appeal to rational relations R ⊆ X∗ ×X∗. A relation
R is rational if it is induced by an unlabelled transducer over X : that is, a
transducer that does not have a labelling function L, see [1, 2].

3 Traces of rational graphs are context-sensitive

In this section, we prove that the trace of a rational graph G, relative to regular
vertex sets I and F , is a context-sensitive language. In fact, we only need to
consider the trace of G relative to I = {$} and F = {#}, where $ and # are two
new symbols. If G is rational then the following graph G′,

G ∪ (
⋃

a∈A

{$} × {a} ×Ga(I)) ∪ (
⋃

a∈A

G
−1

a (F)× {a} × {#}) ∪ (
⋃

C

{$} × {a} × {#})

where C is the constraint a ∈ A, Ga(I) ∩ F 6= ∅, is also rational and has the
property, L(G′, {$}, {#}) = L(G, I, F).

The two most common characterizations of a context-sensitive (cs) language
are that it is generated by a cs grammar and that it is recognized by a linear
bounded machine, LBM, see for instance [8].

Definition 3.1. A linear bounded machine, LBM, is a Turing machine such
that the size of its tape is bounded, linearly, by the length of the input.

At a first glance, one might expect that the trace of a rational graph is recognis-
able by a LBM because it can store information on its tape (namely the current
vertex of the graph), and use it to compute new information (the next vertex).
However, the linear bound is a problem as the next example illustrates.

Example 3.2. The very simple transducer, p
A/AA
−−−−→ p (where p is both an

initial and a final state labelled with a), produces the following graph G.

A
a
−→ AA

a
−→ A4 a

−→ · · ·
a
−→ A2n · · ·

A3 a
−→ A6 a

−→ A12 a
−→ · · ·

a
−→ A3.2n · · ·

A5 a
−→ A10 a

−→ A20 a
−→ · · ·

a
−→ A5.2n · · ·

...
...

...

The trace of G relative to I = {A} and F = A∗ is the language a∗. But, the
length of vertices is exponential in the length of the word that is recognized. For
example, the path recognizing a3 is A

a
−→ AA

a
−→ A4 a

−→ A8.

Our solution1 is to work on transitions in parallel. If u
a
−→ v

b
−→ w and the

first “output” in the transducer Ta involves a transition q
ǫ/X
−−→ q′ then X will

be the first element of v and therefore we can also activate Tb (and remember
that q′ is then the current state of Ta). In this way, as we shall see, we only ever
need to be working with current head elements which may activate subsequent
transitions.

Proposition 3.3. Traces of rational graphs are cs-languages.

Proof (Sketch). Assume a rational graph G that is generated by a normalised
transducer T . We now show that L(G, {$}, {#}) is recognised by a LBM, M . Let
w ∈ A∗, and assume that wk is the kth letter of w. The tape of M has length
2|w|+ 3, and it has a left-end marker X. The initial configuration of M is,

X w

p0 |w| |w|+ 2

where the tape symbols are the left-end marker, the letters of A, and then blank
symbols. M then transforms this configuration into
1 One might believe that it is possible to encode vertices in such a way that their
lengths are linear in the length of the recognized word. But, the problem is then
how to deduce the “next vertex function”. In particular, if some branches of the
transducer have a linear growth and others have an exponential growth, we are
unable to construct the machine.

p1
↓

X iw1
$ iw2

ε − − − iwk
ε − − − iwn ε % ε

where ε and % are new tape-symbols, and iwk
are symbols corresponding to an

initial state of Twk
. We assume that there are tape symbols for each state of the

transducer T .
Now, we consider transitions where the head moves to the right. Assume that

the current configuration is,

p1

Apa pb C

where A and C both belong to A∪{$,#, ε}, pa is any state of Ta and pb is either
a state of Tb or %. There are two possible moves. First, if there is a transition

pa
A/ε
−−→ qa in Ta then M can make the following step.

p1

Move (a)pbεqa C

A is removed because the transition pa
A/ε
−−→ qa consumes this input. C is un-

changed because ε is the output. We also assume that M remains in state p1.

Second, if there is a transition pa
ε/B
−−→ q′a in Ta and C is ε then M can make

the following step. p1

BpbAq′a Move (b)

A is not removed because the transition pa
ε/B
−−→ q′a consumes nothing. C = ε is

changed to B. Again, we assume M remains in state p1.
Next, we consider transitions where the head moves to the left. If the current

configuration is p1

paBpb C

and either C = ε or (C = # and pa = %) then M can make the following step.

p1

paBpb Move (c)C

Finally, there is the case when M checks for success. This happens either
when the head is scanning % and the next symbol is # or the head is scanning
fwi and the next symbol is ε.

p1p1

X %AnpwnA2pw2
A1pw1

#εfwi

M now checks that each pai is a final state fai of Tai and that Ai is ε, and if
this is true, then M enters a final accepting state. It is now not difficult to show
that M recognizes the language L(G, {$}, {#}). ⊓⊔

4 Cs-languages are traces of rational graphs

In this section we prove the converse inclusion that every cs-language is the trace
of a rational graph relative to regular initial and final sets of vertices. The proof
is subtle, for reasons that we shall explain, and uses Penttonen’s characterization
of a cs-language as the image of a linear language under a length preserving left
cs transformation [11].

A cs-language is generated by a cs grammar. A cs grammar Γ consists of
a finite set of nonterminals N , a finite set of terminals T and a finite set of
productions P , each of which has the form UAW → UVW , where U and W

are in (N ∪ T)∗, A in N and V in (N ∪ T)+. An application of the production
UAW → UVW in Γ to U1UAWW1 produces U1UVWW1, which we write as
U1UAWW1 →

Γ
U1UVWW1. Moreover, we assume that

∗
→
Γ

is the reflexive and

transitive closure of →
Γ
. Sometimes, we shall use the notation

∗
→
Γ
(U) to be the

set {V |U
∗
→
Γ
V }. The language of U ∈ (N ∪ T)+, denoted by L(U), is the set of

words
{

u ∈ T ∗ | U→
Γ

∗u
}

. Usually, there is a start symbol S ∈ N of Γ , in which

case the language generated by the grammar, L(Γ), is L(S). There are various
normal forms for cs grammars, including the “left form” due to Penttonen [11].

Theorem 4.1 (Penttonen 74). Every cs-language can be generated by a gram-
mar, whose productions have the form

A → BC,AB → AC,A → a

where A,B,C are nonterminals and a is a terminal.

If ε-transitions are allowed in rational graphs and Γ is a cs grammar, then
it is easy to construct a rational graph whose trace is L(Γ). One merely simu-
lates the derivation S→

Γ

∗v in the graph. Each production can be simulated by a

transducer whose final state is labelled ǫ (for instance, AB → AC is captured

by the transducer p
D/D
−−−→ p, p

AB/AC
−−−−−→ q and q

D/D
−−−→ q for each D ∈ N) and

the graph outputs v at the end, v
v
−→ ε. However, the traces of rational graphs

with ε-transitions coincide with the recursively enumerable languages. Indeed,
following Knapik and Payet’s exposition in [7], it is straightforward to prove the
next result. It appeals to the standard notion of projection π with respect to a
subalphabet: if J ⊆ B∗ and C ⊆ B then πC(J) is the language that is the result
of erasing all occurrences of letters in B − C from words in J .

Corollary 4.2. If K ⊆ A∗ is a recursively enumerable language and c 6∈ A is
a new letter, then there is a language K ′ ⊆ (A ∪ {c})∗ and a rational graph G

whose trace is K ′ and K = πA(K
′).

This result is also a well known property of cs-languages (see, for example,
[6]). However, the trace of a rational graph without ε-transitions is a recursive
language, [9], and therefore the rational graphs with ε-transitions are more ex-
pressive than rational graphs.

What is the real problem of being able to generate a cs-language from a
rational graph? As we can see simulating an application of a single production
does not create a problem. And therefore simulating sequences of productions is
also not problematic. The main issue is generating each word of length n in “real
time”, that is, in precisely n steps. This is in stark contrast with derivations in
cs grammars. The number of applications of productions in a derivation S→

Γ

∗u

can be exponential in the length of the word u, as the next example illustrates.

Example 4.3.

Γ















S → AT AB → AC AC → AB

T → RT | BD BE → BF BG → BD

R → BD CD → CE CF → CG

DC → DB EB → EC GC → GB

There is the derivation S→
Γ

∗A(BD)n just by applying the S, T and R rules. How-

ever, consider the number of steps it takes to replace an occurrence ofD with G in

A(BD)n. For instance, when n = 2, AB DBD → A CD BD → AC EB D →

ACE CD → AC ECE → A BE CE → AB FCE → A CF CE → ACGCE.
To replace D at position 2n+ 1 with G requires 2n applications of productions
involving the initial letter A in the first position, as it requires 2n−1 applications
of both AB → AC and AC → AB. This also means that the initial A cannot
be removed before the end of the computation.

Consequently, we use a more refined characterization of the cs-languages than
that they are generable by cs grammars, that is due to Penttonen (Theorem 3
in [11]).

Theorem 4.4 (Penttonen 74). There is a linear language Llin such that
every cs-language K can be represented in the form,

K =
{

u ∈ A∗ | ∃v ∈ Llin ∧ ∃n ∈ N ∧ v→
τ

nu
}

, where τ is a length preserving

left cs transformation.

A linear language is generated from a context-free grammar where each pro-
duction contains at most one nonterminal on its right hand side: for example, if
S → aSb, S → ab then L(S) is linear. In Theorem 4.4, a length preserving left cs
transformation is a set of rewrite rules of the form ua → ub where u ∈ A∗ and
a, b ∈ A. However, we shall work with linear languages whose alphabet is a set
of nonterminals that, for us, will be vertex symbols. Clearly, Theorem 4.4 can be

easily recast with respect to such an alphabet just by assuming each element of
A is coded as a nonterminal A. However, we also need rules to transform nonter-
minals into terminals, which will just be of the form A → a. A length preserving
left cs transformation τ therefore is a set of productions of the form UA → UB.
The relation

∗
→
τ
, therefore, has the important property that if U

∗
→
τ
V then the

length of U is the same as the length of V . In fact, the proof of Theorem 4.4 in
[11] shows that it is only necessary to consider productions of length at most 2.

Definition 4.5. A 2-left-length-preserving transformation is a set of produc-
tions of the form, AB → AC and A → a, where A,B,C ∈ N and a ∈ A.

It is clear how to define a rational graph whose trace is a linear language,
Llin. However, we then need to “filter” it through a 2-left-length-preserving
transformation τ . But, there is no obvious transducer associated with τ . In
particular, the relation →

τ

∗ may not be rational (that is, definable by a finite

transducer), as the following example illustrates.

Example 4.6. If τ is {AB → AC,AC → AA,CA → CB}, then its rewriting
relation is not rational. →

τ

∗((AB)∗) ∩ A∗B∗ = {AnBm | n > m}. (AB)∗ is

a regular language and, therefore, if →
τ

∗ were rational then →
τ

∗((AB)∗) and

{AnBm | n > m} would also be regular sets.

A more subtle construction is needed to rationally capture τ . Consider a
derivation U(1) . . . U(n)→

τ

∗V (1) . . . V (n) where n > 1 and each U(i) and V (i) is

a nonterminal. We can represent such a derivation in the following 2-dimensional

form

U0(1) · · · U0(n)
U1(1) · · · U1(n)

...
...

Um(1) · · · Um(n)
where U0(i) = U(i) and Um(i) = V (i) and Ui(1) . . . Ui(n)→

τ
Ui+1(1) . . . Ui+1(n).

As noted previously, m can be exponential in n. We wish to capture this deriva-
tion in (n− 1) steps with a rational relation Rτ in one left to right swoop. First,
notice that in the first column there is just one element because U(1) = V (1). In
the second column there may be a number of different, and repeating, elements.
For instance, if Ui(2) 6= Ui+1(2) then U(1)Ui(2)→

τ
U(1)Ui+1(2). Consider the

subsequence of this column with initial element U0(2) and subsequent elements
when it changes, [U0(2), Ui1(2), . . . , Uik2

(2)], so the final element Uik2
(2) is V (2).

Next, consider the third column starting with U0(3). Changes to this element
may depend on elements in the second column and not just on U(2). For exam-
ple Uij (2)Uℓ(3)→

τ
Uij (2)Uℓ+1(3). And so on. What we now define is a rational

relation Rτ which will include

[U(1)]U(2) . . . U(n) Rτ [U1(2)Ui1(2) . . . Uik2
(2)]U(3) . . . U(n)

and by composition, it will have the property

[U(1)]U(2) . . . U(n) Rj−1
τ [U1(j)Ui1(j) . . . Uikj (j)

]U(j + 1) . . . U(n)

where Rk
τ is the kfold composition of Rτ . Consequently, this relation transforms

a word of the form [U]AV into a word [AU ′]V where U ∈ N+ and V, U ′ ∈ N∗

and A ∈ N which says that A may be rewritten to elements of U ′ in turn,
depending on the changing context represented by U . We now define Rτ .

Definition 4.7. If τ is a 2-left-length-preserving transformation and X = N ∪
{[,]}, then Rτ ⊆ X∗ × X∗ is the rational relation recognized by the following
transducer Tτ .

Tτ







































I
[X/[A
−−−−→ (A,X,A) ∀A,X ∈ N Type 1

(A,X, Y)
ε/Z
−−→ (A,X,Z) ∀A,X, Y, Z ∈ N and XY →

τ
XZ Type 2

(A,X, Y)
Z/ε
−−→ (A,Z, Y) ∀A,X, Y, Z ∈ N Type 3

(A,X, Y)
]A/]
−−→ F ∀A,X, Y ∈ N Type 4

F
X/X
−−−→ F ∀X ∈ N Type 5

States of this transducer are: (X,Y, Z) for all X,Y, Z ∈ N , the initial state I

and the final state F .

Example 4.8. Assume τ = {AB → AC,AC → AB,CB → CE,BE → BF}.

[A]B Rτ [BCB]:
A

A

A

B

C

B

[BCB]BAB Rτ [BEF]AB:

AB

AC

AC

AB

AB

B

B

E

E

F

AB

AB

AB

AB

AB

The relation Rτ underlies a rational graph whose trace is the corresponding
language. Before proving this, we need a technical lemma.

Lemma 4.9. If U , V ∈ N∗ and |U | = |V | = n, then the following statements
are equivalent.

(i) U→
τ

∗V , using only productions of the form AB → AC ∈ τ

(ii) [U(1)]U(2) · · ·U(n) Rτ
n−1[U(n)WV (n)], for some W in N∗

Proof. (Sketch) Let U and V belong to N∗, and assume that they have equal
length n. Moreover, assume that {r1, r2, · · · , rk} are all the productions in τ

of the form AB → AC. First, we show (i) ⇒ (ii). If U→
τ

∗V , then there exists

m > 1 such that U = U1 →
rℓ1

U2 · · · →
rℓm−1

Um = V . For each j between 1 and m−1

assume that Ij is the set {i | Ui(j) 6= Ui+1(j)}: that is, it is the set of indices i
such that the rule rℓi of τ changes the jth letter of Ui. Notice that I1 = ∅, and
if i 6= j then Ii ∩ Ij = ∅ and, moreover,

⋃n
j=1 Ij = [m]. The following holds, for

all j ≥ 2.

[U1(j − 1)
∏

i∈Ij−1

Ui+1(j − 1)]U1(j) Rτ [U1(j)
∏

i∈Ij

Ui+1(j)]

Therefore, there is a path in Tτ which starts in I and ends in F that is labelled
[U1(j− 1)

∏

i∈Ij−1
Ui+1(j− 1)]U1(j) on the left and [U1(j)

∏

i∈Ij
Ui+1(j)] on the

right. By Definition 4.7, therefore, there is the following transition in Tτ .

I
[U1(j−1)/[U1(j)
−−−−−−−−−−→ (U1(j), U1(j − 1), U1(j))

Using a type 4 transition, there is a transition to the final state.

(Um(j), Um(j − 1), Um(j))
]Um(j)/]
−−−−−→ F

Thus, for all j > 2

[U1(j − 1)
∏

i∈Ij−1
Ui+1(j − 1)]U1(j) Rτ [U1(j)

∏

i∈Ij
Ui+1(j)]

By induction on j it follows that

[U(1)]U(2) · · ·U(n) Rτ
j−1 [U1(j)

∏

i∈Ij

Ui+1(j)]U1(j + 1) · · ·U1(n)

The proof (ii) ⇒ (i) is easier. Associated with any kfold composition of Rτ is a
sequence of applications of productions of τ . ⊓⊔

This lemma is used in the proof of the next result.

Proposition 4.10. Cs-languages are traces of rational graphs.

Proof. Assume K is a cs-language, and let τ be a 2-left-length-preserving trans-
formation, by Theorem 4.4, such that →

τ

∗(Llin) = K. We use the relation Rτ of

Definition 4.7 to construct a rational graph. For each letter a in A, Na is the set
of nonterminals A such that A→

τ
a. Let Ra be the relation Rτ ∩ [N∗Na]N

+ ×

[N∗]N∗ which is rational, see [2]. Therefore, the following graph G0 is rational,
G0 =

⋃

a∈A
{(x, a, y) | (x, y) ∈ Ra}. Therefore, the following graph G1 is also

rational.
G1 = G0 ∪

⋃

a∈A

[N∗Na]× {a} × {ε}

Let [Llin] be the language {[A]U | A ∈ N ∧ U ∈ N∗ ∧ AU ∈ Llin}. Therefore,
L(G1, [Llin], {ε}) = K.

u ∈ L(G1, [Llin], {ε}), and the length of u is n

⇔ [V (1)]V (2) · · ·V (n)
u

−−→
G1

ε

⇔ [V (1)]V (2) · · ·V (n) Ru(1) [V (2) · · ·V ′(2)]V (3) · · ·V (n) Ru(2) · · ·

· · · Ru(n−1)[V (n) · · ·V ′(n)] Ru(n) ε

Lemma 4.9
⇔ V (1)V (2) · · ·V (n)→

τ

∗V (1)V ′(2) · · ·V ′(n)

and V (1)→
τ
u(1) ∧ ∀i ∈ [2 . . . n], V ′(i)→

τ
u(i)

⇔ u ∈ K

The problem is now that [Llin] is not a regular language. To get a proper con-
verse of Proposition 3.3 we need to find a rational graph whose trace between
two regular sets is K. However, [Llin] is generable by a context-free grammar
Γ in Greibach normal form, where every production has a single nonterminal
(belonging to N) on its right hand side. The relation Rτ transforms a word in
Llin from left to right, and therefore G1 can be transformed into G in such a way
that it starts with extended words in Γ that begin with precisely two terminal
letters. Let I be this finite set of words. The transducer generating G will also
apply productions of Γ to obtain more letters of N so that the computation
continues. Consequently, it now follows that K = L(G, I, {ε}). ⊓⊔

The proof of Proposition 4.10 constructs a graph that may have infinite de-
gree. However, there can only be infinite degree if there are cycles in the trans-
formation τ . It is possible to remove such cycles: for any 2-left-length-preserving
transformation τ , there is an equivalent 2-left-length-preserving transformation
τ ′ which is acyclic. Therefore, it follows that for any cs-language there is a ra-
tional graph of finite, but not necessarily bounded, degree whose trace coincides
with the language.

Proposition 4.11. If K ⊆ A∗ is a cs-language, then there is a rational graph
G of finite degree such that K = L(G, I, F) where I and F are finite sets of
vertices.

Combining Propositions 3.3 and 4.10, we thereby obtain the main result of
the paper.

Theorem 4.12. Traces of rational graphs are all the cs-languages.

5 Conclusion

We have shown that the traces of rational graphs relative to regular initial and
final sets of vertices coincide with the cs-languages. This new characterization
of the cs-languages may offer new insights into these languages. For instance,
an interesting question is: is it possible to define a subfamily of rational graphs
whose traces are the deterministic cs-languages?

Acknowledgements

The authors are grateful to Thierry Cachat, Didier Caucal and Jean-Claude
Raoult for their helpful comments on this paper.

References

1. Autebert, J.-M. and Boasson, L. Transductions rationelles. Masson, 1988.
2. Berstel, J. Transductions and context-free languages. Teubner, 1979.
3. Moller, F. Burkart, O, Caucal, D. and Steffen B. Handbook of Process

Algebra, chapter Verification on infinite structures, pages 545–623. Elsevier, 2001.

4. Caucal, D. On transition graphs having a decidable monadic theory. In Icalp 96,
volume 1099 of LNCS, pages 194–205, 1996.

5. Courcelle, B. Handbook of Theoretical Computer Science, chapter Graph rewrit-
ing: an algebraic and logic approach. Elsevier, 1990.

6. Ginsburg, S. and Rose, G.F. Preservation of languages by transducers. Infor-

mation and control, 9:153–176, 1966.
7. Knapik, T. and Payet, E. Synchronization product of linear bounded machines.

In FCT, volume 1684 of LNCS, pages 362–373, 1999.
8. Mateescu, A, Salomaa, A. Handbook of Formal Languages, volume 1, chapter

Aspects of classical language theory, pages 175–252. Springer-Verlag, 1997.
9. Morvan, C. On rational graphs. In Fossacs 00, volume 1784 of LNCS, pages

252–266, 2000.
10. Muller, D. and Schupp, P. The theory of ends, pushdown automata, and second-

order logic. Theoretical Computer Science, 37:51–75, 1985.
11. Penttonen, M. One-sided and two-sided context in formal grammars. Informa-

tion and Control, 25:371–392, 1974.

