Using Random Butterfly Transformations to Avoid Pivoting in Sparse Direct Methods

Abstract : We consider the solution of sparse linear systems using direct methods via LU factorization. Unless the matrix is positive definite, numerical pivoting is usually needed to ensure stability, which is costly to implement especially in the sparse case. The Random Butterfly Transformations (RBT) technique provides an alternative to pivoting and is easily parallelizable. The RBT transforms the original matrix into another one that can be factorized without pivoting with probability one. This approach has been successful for dense matrices; in this work, we investigate the sparse case. In particular, we address the issue of fill-in in the transformed system.
Type de document :
Rapport
[Research Report] RR-8481, Inria. 2014
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00950612
Contributeur : Marc Baboulin <>
Soumis le : mardi 25 février 2014 - 22:07:33
Dernière modification le : jeudi 5 avril 2018 - 12:30:23
Document(s) archivé(s) le : dimanche 25 mai 2014 - 10:43:14

Fichier

RR-8481.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00950612, version 1

Collections

Citation

Marc Baboulin, Xiaoye S. Li, François-Henry Rouet. Using Random Butterfly Transformations to Avoid Pivoting in Sparse Direct Methods. [Research Report] RR-8481, Inria. 2014. 〈hal-00950612〉

Partager

Métriques

Consultations de la notice

480

Téléchargements de fichiers

248