R. Abgrall, R. Loubère, and J. Ovadia, A Lagrangian Discontinuous Galerkintype method on unstructured meshes to solve hydrodynamics problems, Int. J. Numer. Meth. Fluids, vol.44, pp.645-663, 2004.

A. J. Barlow, A compatible finite element multi-material ALE hydrodynamics algorithm, International Journal for Numerical Methods in Fluids, vol.141, issue.8, pp.953-964, 2008.
DOI : 10.1002/fld.1593

A. J. Barlow, A high order cell centred dual grid Lagrangian Godunov scheme. Computers and Fluids, pp.15-24, 2013.

Y. Bazilevs, I. Akkerman, D. J. Benson, G. Scovazzi, and M. J. Shashkov, Isogeometric analysis of Lagrangian hydrodynamics, Journal of Computational Physics, vol.243, pp.224-243, 2013.
DOI : 10.1016/j.jcp.2013.02.021

B. Boutin, E. Deriaz, P. Hoch, and P. Navaro, Extension of ALE methodology to unstructured conical meshes, ESAIM: Proceedings, pp.1-10, 2011.
DOI : 10.1051/proc/2011011

URL : https://hal.archives-ouvertes.fr/hal-00777271

D. E. Burton, T. C. Carney, N. R. Morgan, S. K. Sambasivan, and M. J. Shashkov, A cell-centered Lagrangian Godunov-like method for solid dynamics, Computers & Fluids, vol.83, pp.33-47, 2013.
DOI : 10.1016/j.compfluid.2012.09.008

E. J. Caramana, D. E. Burton, M. J. Shashkov, and P. P. Whalen, The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy, Journal of Computational Physics, vol.146, issue.1, pp.227-262, 1998.
DOI : 10.1006/jcph.1998.6029

E. J. Caramana and M. J. Shashkov, Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures, Journal of Computational Physics, vol.142, issue.2, pp.521-561, 1998.
DOI : 10.1006/jcph.1998.5952

G. Carré, S. Delpino, B. Després, and E. Labourasse, A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, Journal of Computational Physics, vol.228, issue.14, pp.5160-5183, 2009.
DOI : 10.1016/j.jcp.2009.04.015

J. Cheng and C. Shu, A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, Journal of Computational Physics, vol.227, issue.2, pp.1567-1596, 2007.
DOI : 10.1016/j.jcp.2007.09.017

J. Cheng and C. Shu, A third-order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations, Commun. Comput. Phys, vol.4, pp.1008-1024, 2008.

B. Cockburn, S. Hou, and C. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comp, vol.54, pp.545-581, 1990.

B. Cockburn, S. Lin, and C. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems, Journal of Computational Physics, vol.84, issue.1, pp.90-113, 1989.
DOI : 10.1016/0021-9991(89)90183-6

B. Després and C. Mazeran, Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems, Archive for Rational Mechanics and Analysis, vol.180, issue.3, pp.327-372, 2005.
DOI : 10.1007/s00205-005-0375-4

V. A. Dobrev, T. E. Ellis, T. V. Kolev, and R. N. Rieben, Curvilinear finite elements for Lagrangian hydrodynamics, International Journal for Numerical Methods in Fluids, vol.72, issue.1, pp.11-121295, 2011.
DOI : 10.1002/fld.2366

V. A. Dobrev, T. E. Ellis, T. V. Kolev, and R. N. Rieben, High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics, SIAM Journal on Scientific Computing, vol.34, issue.5, pp.606-641, 2012.
DOI : 10.1137/120864672

V. A. Dobrev, T. E. Ellis, T. V. Kolev, and R. N. Rieben, High Order Curvilinear Finite Elements for axisymmetric Lagrangian Hydrodynamics. Computers and Fluids, pp.58-69, 2013.

P. Germain, Mécanique, volume I. Ellipses, 1986.

W. B. Goad, WAT: A Numerical Method for Two-Dimensional Unsteady Fluid Flow, 1960.

P. Gresho, On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 2: Implementation, International Journal for Numerical Methods in Fluids, vol.7, issue.5, 1990.
DOI : 10.1002/fld.1650110510

M. E. Gurtin, E. Fried, and L. Anand, The Mechanics and Thermodynamics of Continua, 2009.
DOI : 10.1017/CBO9780511762956

Z. Jia and S. Zhang, A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions, Journal of Computational Physics, vol.230, issue.7, pp.2496-2522, 2011.
DOI : 10.1016/j.jcp.2010.12.023

J. R. Kamm and F. X. Timmes, On efficient generation of numerically robust Sedov solutions, 2007.

G. Kluth and B. Després, Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme, Journal of Computational Physics, vol.229, issue.24, pp.9092-9118, 2010.
DOI : 10.1016/j.jcp.2010.08.024

. V. Tz, R. N. Kolev, and . Rieben, A tensor artificial viscosity using a finite element approach, J. Comp. Phys, vol.228, pp.8336-8366, 2010.

D. Kuzmin, A vertex-based hierarchical slope limiter for <mml:math altimg="si27.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>p</mml:mi></mml:math>-adaptive discontinuous Galerkin methods, Journal of Computational and Applied Mathematics, vol.233, issue.12, pp.3077-3085, 2009.
DOI : 10.1016/j.cam.2009.05.028

P. Lascaux, Application de la méthode des éléments finis en hydrodynamique bi-dimensionnelle utilisant les variables de Lagrange, 1972.

P. Lascaux, Application of the Finite Element Method to 2D Lagrangian hydrodynamics In Finite element methods in flow problems, Proceedings of the International Symposium, pp.139-152, 1974.

R. Loubère, Une Méthode Particulaire Lagrangienne de type Galerkin Discontinu Application à la Mécanique des Fluides et l'Interaction Laser/Plasma, 2002.

R. Loubère, P. Maire, and P. Vàchal, 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity, International Journal for Numerical Methods in Fluids, vol.72, issue.1, pp.22-42, 2013.
DOI : 10.1002/fld.3730

H. Luo, J. D. Baum, and R. Löhner, A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids, Journal of Computational Physics, vol.227, issue.20, pp.8875-8893, 2008.
DOI : 10.1016/j.jcp.2008.06.035

P. Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, Journal of Computational Physics, vol.228, issue.7, pp.2391-2425, 2009.
DOI : 10.1016/j.jcp.2008.12.007

URL : https://hal.archives-ouvertes.fr/inria-00322369

P. Maire, A high-order one-step sub-cell force-based discretization for cellcentered Lagrangian hydrodynamics on polygonal grids . Computers and Fluids, pp.479-485, 2011.

P. Maire, R. Abgrall, J. Breil, and J. Ovadia, A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems, SIAM Journal on Scientific Computing, vol.29, issue.4, pp.1781-1824, 2007.
DOI : 10.1137/050633019

URL : https://hal.archives-ouvertes.fr/inria-00334022

P. Maire, R. Loubère, and P. Vàchal, Abstract, Communications in Computational Physics, vol.146, issue.04, pp.940-978, 2011.
DOI : 10.1016/j.jcp.2005.11.022

C. Mazeran, Sur la structure mathématique et l'approximation numérique de l'hydrodynamique Lagrangienne bidimensionelle, 2007.

W. F. Noh, Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, Journal of Computational Physics, vol.72, issue.1, pp.78-120, 1987.
DOI : 10.1016/0021-9991(87)90074-X

S. and D. Pino, A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates, Comptes Rendus Mathematique, vol.348, issue.17-18, pp.1027-1032, 2010.
DOI : 10.1016/j.crma.2010.08.006

B. J. Plohr and D. H. Sharp, A conservative Eulerian formulation of the equations for elastic flow, Advances in Applied Mathematics, vol.9, issue.4, pp.481-499, 1988.
DOI : 10.1016/0196-8858(88)90025-5

G. Scovazzi, Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.4-6, pp.966-978, 2007.
DOI : 10.1016/j.cma.2006.08.009

G. Scovazzi, M. A. Christon, T. J. Hughes, and J. N. Shadid, Stabilized shock hydrodynamics: I. A Lagrangian method, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.4-6, pp.923-966, 2007.
DOI : 10.1016/j.cma.2006.08.008

G. Scovazzi, E. Love, and M. J. Shashkov, Multi-scale Lagrangian shock hydrodynamics on Q1/P0 finite elements: Theoretical framework and two-dimensional computations, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.9-12, pp.1056-1079, 2008.
DOI : 10.1016/j.cma.2007.10.002

C. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics, vol.77, issue.2, pp.439-471, 1988.
DOI : 10.1016/0021-9991(88)90177-5

G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, Journal of Computational Physics, vol.27, issue.1, pp.1-31, 1978.
DOI : 10.1016/0021-9991(78)90023-2

]. F. Vilar, Cell-centered discontinuous Galerkin discretization for twodimensional Lagrangian hydrodynamics. Computers and Fluids, pp.64-73, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01093675

F. Vilar, P. Maire, and R. Abgrall, Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics, Computers & Fluids, vol.46, issue.1, pp.498-604, 2010.
DOI : 10.1016/j.compfluid.2010.07.018

URL : https://hal.archives-ouvertes.fr/inria-00538165

M. L. Wilkins, Methods in Computational Physics, pp.211-263, 1964.