Sound Representation and Classification Benchmark for Domestic Robots

Maxime Janvier 1 Xavier Alameda-Pineda 1 Laurent Girin 2 Radu Horaud 1
1 PERCEPTION - Interpretation and Modelling of Images and Videos
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
2 GIPSA-MAGIC - MAGIC
GIPSA-DPC - Département Parole et Cognition
Abstract : We address the problem of sound representation and classification and present results of a comparative study in the context of a domestic robotic scenario. A dataset of sounds was recorded in realistic conditions (background noise, presence of several sound sources, reverberations, etc.) using the humanoid robot NAO. An extended benchmark is carried out to test a variety of representations combined with several classifiers. We provide results obtained with the annotated dataset and we assess the methods quantitatively on the basis of their classification scores, computation times and memory requirements. The annotated dataset is publicly available at https://team.inria.fr/perception/nard/.
Type de document :
Communication dans un congrès
2014 IEEE International Conference on Robotics and Automation (ICRA 2014), May 2014, Hong-Kong, China. IEEE, pp.6285-6292, 2014, 〈10.1109/ICRA.2014.6907786〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00952092
Contributeur : Team Perception <>
Soumis le : mercredi 26 février 2014 - 11:08:16
Dernière modification le : mercredi 11 avril 2018 - 01:59:43
Document(s) archivé(s) le : lundi 26 mai 2014 - 11:45:44

Fichier

ICRA2014_Janvier.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Maxime Janvier, Xavier Alameda-Pineda, Laurent Girin, Radu Horaud. Sound Representation and Classification Benchmark for Domestic Robots. 2014 IEEE International Conference on Robotics and Automation (ICRA 2014), May 2014, Hong-Kong, China. IEEE, pp.6285-6292, 2014, 〈10.1109/ICRA.2014.6907786〉. 〈hal-00952092〉

Partager

Métriques

Consultations de la notice

718

Téléchargements de fichiers

737