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Data-driven HRF estimation for encoding and decoding models

Fabian Pedregosa®2%* Michael Eickenberg!?#, Philippe Ciuciu®*, Bertrand Thirion?#, Alexandre
Gramfort34

Abstract

Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it
is known that the shape of the HRF varies across brain regions and subjects. This suggests that a data-
driven estimation of this function could lead to more statistical power when modeling BOLD fMRI data.
However, unconstrained estimation of the HRF can yield highly unstable results when the number of free
parameters is large. We develop a method for the joint estimation of activation and HRF by means of a rank
constraint, forcing the estimated HRF to be equal across events or experimental conditions, yet permitting
it to differ across voxels. Model estimation leads to an optimization problem that we propose to solve with
an efficient quasi-Newton method, exploiting fast gradient computations. This model, called GLM with
Rank-1 constraint (R1-GLM), can be extended to the setting of GLM with separate designs which has been
shown to improve decoding accuracy in brain activity decoding experiments. We compare 10 different HRF
modeling methods in terms of encoding and decoding score on two different datasets. Our results show that
the R1-GLM model outperforms competing methods in both encoding and decoding settings, positioning it
as an attractive method both from the points of view of accuracy and computational efficiency.

Keywords: Functional MRI (fMRI), Hemodynamic response function (HRF), machine learning,
optimization, BOLD, Finite inpulse response (FIR), decoding, encoding

1. Introduction

The use of machine learning techniques to predict the cognitive state of a subject from their functional
MRI (fMRI) data recorded during task performance has become a popular analysis approach for neuroimag-
ing studies over the last decade (Cox and Savoyl, |2003; Haynes and Rees, 2006)). It is now commonly referred
to as brain reading or decoding. In this setting, the BOLD signal is used to predict the task or stimulus
that the subject was performing. Although it is possible to perform decoding directly on raw BOLD sig-

nal (Mourao Miranda et al., 2007 [Miyawaki et al.,|2008)), the common approach in fast event-related designs
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consists in extracting the activation coefficients (beta-maps) from the BOLD signal to perform the decoding

analysis on these estimates. Similarly, in the voxel-based encoding models (Kay et al., 2008 [Naselaris et al.,

2011)), the activation coefficients are extracted from the BOLD signal, this time to learn a model to predict

the BOLD response in a given voxel, based on a given representation of the stimuli. In addition, a third

approach, known as representational similarity analysis or RSA (Kriegeskorte et al.||2008]) takes as input the

activation coefficients. In this case a comparison is made between the similarity observed in the activation
coeflicients, quantified by a correlation measure, and the similarity between the stimuli, quantified by a
similarity measure defined from the experimental setting.

These activation coefficients are computed by means of the General Linear Model (GLM) (Friston et al.|
1995). While this approach has been successfully used in a wide range of studies, it does suffer from limi-

tations (Poline and Brett, 2012). For instance, the GLM commonly relies on a data-independent canonical

form of the hemodynamic response function (HRF) to estimate the activation coefficient. However it is

known (Handwerker et all [2004; Badillo et all 2013b)) that the shape of this response function can vary

substantially across subjects and brain regions. This suggests that an adaptive modeling of this response
function should improve the accuracy of subsequent analysis.

To overcome the aforementioned limitation, Finite Impulse Response (FIR) models have been proposed

within the GLM framework (Dale| 1999; Glover, [1999)). These models do not assume any particular shape

for the HRF and amount to estimating a large number of parameters in order to identify it. While the FIR-
based modeling makes it possible to estimate the activation coefficient and the HRF simultaneously, the
increased flexibility has a cost. The estimator is less robust and prone to overfitting, i.e. to generalize badly
to unseen data. In general, FIR models are most appropriate for studies focused on the characterization
of the shape of the hemodynamic response, and not for studies that are primarily focused on detecting

activation (Poldrack et all [2011, Chapter 5).

Several strategies aiming at reducing the number of degrees of freedom of the FIR model - and thus at
limiting the risk of overfitting - have been proposed. One possibility is to constrain the shape of the HRF to

be a linear combination of a small number of basis functions. A common choice of basis is formed by three

elements consisting of a reference HRF as well as its time and dispersion derivatives (Friston et all [1998)),

although it is also possible to compute a basis set that spans a desired function space (Woolrich et al. [2004]).

More generally, one can also define a parametric model of the HRF and estimate the parameters that best

fit this function (Lindquist and Wager, |2007)). However, in this case the estimated HRF may no longer be

a linear function of the input parameters.

Sensitivity to noise and overfitting can also be reduced through regularization. For example, temporal

regularization has been used in the smooth FIR (Goutte et all 2000} (Ciuciu et al., [2003} (Casanova et al.,

2008)) to favor solutions with small second order time derivative. These approaches require the setting of one
or several hyperparameters, at the voxel or potentially at the parcel level (if several voxels in a pre-defined
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parcel are assumed to share some aspects of the HRF timecourse). Even if efficient techniques such as
generalized cross-validation (Golub et all [1979) can be used to choose the regularization parameters, these
methods are inherently more costly than basis-constrained methods. Basis-constrained methods also require
setting the number of basis elements; however, this parameter is not continuous (as in the case of regularized
methods), and in practice only few values are explored: for example the 3-element basis set formed by a
reference HRF plus derivatives and the FIR model. This paper focuses on basis-constrained regularization
of the HRF to avoid dealing with hyperparameter selection with the goal of remaining computationally
attractive. A different approach to increase robustness of the estimates consists in linking the estimated
HRFs across a predefined brain parcel, taking advantage of the spatially dependent nature of fMRI (Wang
et al., |2013)). However, hemodynamically-informed parcellations (Chaari et al.| |2012; [Badillo et al., |2013a))
rely on the computation of a large number of estimations at the voxel or sub-parcel level. In this setting,
the development of voxel-wise estimation procedures is complementary to the development of parcellation
methods in that more robust estimation methods at the voxel level would naturally translate into more
robust parcellation methods. In this paper we focus on voxel-wise estimation methods.

We propose a method for the simultaneous estimation of HRF and activation coefficients based on low-
rank modeling. Within this model, and as in (Makni et al., 2008; Kay et al.,[2008;|Vincent et al.,|2010; Degras
and Lindquist, |2014), the HRF is constrained to be equal across the different conditions, yet permitting it
to be different across voxels. Unlike previous works, we formulate this model as a constrained least squares
problem, where the vector of coefficients is constrained to lie within the space of rank one matrices. We
formulate the model within the framework of smooth optimization and use quasi-Newton methods to find
the vector of estimates. This model was briefly presented in the conference paper (Pedregosa et all 2013).
Here we provide more experimental validation and a more detailed presentation of the method. We also
added results using a GLM with separate designs (Mumford et al., [2012). Ten alternative approaches are
now compared on two publicly available datasets. The solver has also been significantly improved to scale
to full brain data.

The contributions of this paper are two-fold. First, we quantify the importance of HRF estimation in
encoding and decoding models. While the benefit of data-driven estimates of the HRF have already been
reported in the case of decoding (Turner et al., [2012) and encoding approaches (Vu et al., 2011)), we here
provide a comprehensive comparison of models. Second, we evaluate a method called GLM with Rank-
1 constraint (R1-GLM) that improves encoding and decoding scores over state-of-the-art methods while
remaining computationally tractable on a full brain volume. We propose an efficient algorithm for this
method and discuss practical issues such as initialization. Finally, we provide access to an open source

software implementation of the methods discussed in this paper.

Notation: || - || and || - ||oc denote the Euclidean and infinity norm for vectors. We use lowercase



boldface letter to denote vectors and uppercase boldface letter to denote matrices. I denotes the identity
matrix, 1, denotes the vector of ones of size n, ® denotes the Kronecker product and vec(A) denotes the
concatenation of the columns of a matrix A into a single column vector. AT denotes the Moore-Penrose
pseudoinverse. Given the vectors {aj,...,ax} with a; € R™ for each 1 < i < k, we will use the notation
[a1,...,a;] € R™** to represents the columnwise concatenation of the k vectors into a matrix of size n x k.
We will use Matlab-style colon notation to denote slices of an array, that is x(1 : k) will denote the first &

elements of x.

2. Methods

In this section we describe different methods for extracting the HRF and activation coefficients from
BOLD signals. We will refer to each different stimulus as condition and we will call trial a unique presentation
of a given stimulus. We will denote by k the total number of stimuli, y € R™ the BOLD signal at a single

voxel and n the total number of images acquired.

2.1. The General Linear Model

The original GLM model (Friston et al.,|1995)) makes the assumption that the hemodynamic response is a
linear transformation of the underlying neuronal signal. We define the n x k-matrix Xgrm as the columnwise
stacking of different regressors, each one defined as the convolution of a reference HRF (Boynton et al., [1996;
Glover}, [1999) with the stimulus onsets for the given condition. In this work we used as reference HRF the
one provided by the software SPM 8 (Friston et al., [2011). Assuming additive white noise, n > k and
Xarm to be full rank, the vector of estimates is given by [:’yGLM = XI}LM% where EGLM is a vector of size
k representing the amplitude of each one of the conditions in a given voxel.

A popular modification of this setting consists in extending the GLM design matrix with the temporal
and width derivatives of the reference HRF. This basis, formed by the reference HRF and its derivatives with
respect to time and width parameters, will be used throughout this work. We will refer to it as the 3HRF
basis. In this case, each one of the basis elements is convolved with the stimulus onsets of each condition,
obtaining a design matrix of size n x 3k. This way, for each condition, we estimate the form of the HRF
as a sum of basis functions that correspond to the first order Taylor expansion of the parametrization of
the response function. Another basis set that will be used is the Finite Impulse Response (FIR) set. This
basis set spans the complete ambient vector space (of dimension corresponding to the length of the impulse
response) and it is thus a flexible model for capturing the HRF shape. It consists of the canonical unit vectors
(also known as stick function) for the given duration of the estimated HRF. Other basis functions such as
FMRIB’s Linear Optimal Basis Sets (Woolrich et al.,2004) are equally possible but were not considered in

this work.



More generally, one can extend this approach to any set of basis functions. Given the matrix formed
by the stacking of d basis elements B = [by,ba,...,bg], the design matrix Xpg is formed by successively
stacking the regressors obtained by convolving each of the basis elements with the stimulus onsets of each
condition. This results in a matrix of size n x dk and under the aforementioned conditions the vector of
estimates is given by GB = X;gy. In this case, [?)B is no longer a vector of size k: it has length k x d
instead and can no longer be interpreted as the amplitude of the activation. One possibility to recover the
trial-by-trial reponse amplitude is to select the parameters from a single time point as done by some of the
models considered in (Mumford et al., 2012)), however this procedure assumes that the peak BOLD response
is located at that time point. Another possibility is to construct the estimated HRF and take as amplitude
coefficient the peak amplitude of this estimated HRF. This is the approach that we have used in this paper.

2.2. GLM with rank constraint

In the basis-constrained GLM model, the HRF estimation is performed independently for each condition.
This method works reliably whenever the number of conditions is small, but in experimental designs with
a large number of conditions it performs poorly due to the limited conditioning of the problem and the
increasing variance of the estimates.

At a given voxel, it is expected that for similar stimuli the estimated HRF are also similar (Henson et al.|
2002). Hence, a natural idea is to promote a common HRF across the various stimuli (given that they are
sufficiently similar), which should result in more robust estimates (Makni et al. |2008; [Vincent et al., 2010).
In this work we consider a model in which a common HRF is shared across the different stimuli. Besides the
estimation of the HRF, a unique coefficient is obtained per column of our event matrix. This amounts to
the estimation of k + d free parameters instead of k x d as in the standard basis-constrained GLM setting.

The novelty of our method stems from the observation that the formulation of the GLM model with a
common HRF across conditions translates to a rank constraint on the vector of estimates. This assumption
amounts to enforcing the vector of estimates to be of the form Bg = [hf1,hfs, -, hpk] for some HRF
h € R? and a vector of coefficients B € R*. More compactly, this can be written as g = Vec(h[ST). This
can be seen as a constraint on the vector of coefficients to be the vectorization of a rank-one matrix, hence
the name Rank-1 GLM (R1-GLM).

In this model, the coefficients have no longer a closed form expressions, but can be estimated by minimiz-
ing the mean squared error of a bilinear model. Given Xpg and y as before, Z € R"*¢ a matrix of nuisance
parameters such as drift regressors, we define Fgri(h, B, w,Xg,y,Z) = 1|y — Xg vec(hp”) — Zw||? to be
the objective function to be minimized. The optimization problem reads:

h, B, = argmin Fri(h,B,w,Xp,y,Z)
hbw (1
subject to ||Bh|le =1 and (Bh, hye) >0
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The norm constraint is added to avoid the scale ambiguity between h and 3 and the sign is chosen so that
the estimated HRF correlates positively with a given reference HRF h,.s. Otherwise the signs of the HRF
and B can be simultaneously flipped without changing the value of the cost function. Within its feasible
set, the optimization problem is smooth and is convex with respect to h, B and w, however it is not jointly
convez in variables h, 3 and w.

From a practical point of view this formulation has a number of advantages. First, in contrast with the
GLM without rank-1 constraint the estimated coefficients are already factored into the estimated HRF and
the activation coefficients. That is, once the estimation of the model parameters from Eq. is obtained, f’)
is a vector of size k and h is a vector of size d that can be both used in subsequent analysis, while in models
without rank-1 constraint only the vector of coefficients (equivalent to vec(hB”) in rank-1 constrained
models) of size k x d is estimated. In the latter case, the estimated HRF and the beta-maps still have
to be extracted from this vector by methods such as normalization by the peak of the HRF, averaging or
projecting to the set of Rank-1 matrices.

Second, it is readily adapted to prediction on unseen trials. While for classical (non rank-1 models) the
HRF estimation is performed per condition with no HRF associated with unseen conditions, in this setting,
because the estimated HRF is linked and equal across conditions it is natural to use this estimate on unseen
conditions. This setting occurs often in encoding models where prediction on unseen trials is part of the
cross-validation procedure.

This model can also be extended to a parametric HRF model. That is, given the hemodynamic response
defined as a function h : R% — RY of some parameters o, we can formulate the analogous model of Eq.
as an optimization over the parameters « and 3 with the design matrix Xgig given by the convolution of
the event matrix with the FIR basis:

& B, @ = argminFr;(h(x), B, w,Xrr,y, Z)

B ©)
subject to ||h(a)]|cc =1 and (h(),hyer) > 0

In section we will discuss optimization strategies for both models.

2.8. Eztension to separate designs

An extension to the classical GLM that improves the estimation with correlated designs was proposed
in (Mumford et al.,|2012)). In this setting, each voxel is modeled as a linear combination of two regressors in
a design matrix Xgpm. The first one is the regressor associated with a given condition and the second one
is the sum of all other regressors. This results in & design matrices, one for each condition. The estimate for
a given condition is given by the first element in the two-dimensional array Xg:'y, where Xg; is the design

matrix for condition i. We will denote this model GLM with separate designs (GLMS). It has been reported



to find a better estimate in rapid event designs leading to a boost in accuracy for decoding tasks (Mumford
et al., |2012; Schoenmakers et al., [2013} [Lei et al.| [2013)).

This approach was further extended in (Turner et al.;|2012)) to include FIR basis instead of the predefined
canonical function. Here we employ it in the more general setting of a predefined basis set. Given a set
of basis functions we construct the design matrix for condition 7 as the columnwise concatenation of two
matrices X%q; and Xhg,. X%, is given by the columns associated with the current condition in the GLM
matrix and X%Si is the sum of all other columns. In this case, the vector of estimates is given by the first d
vectors of X};Siy. See (Turner et al., [2012) for a more complete description of the matrices X%, and X}, .

It is possible to use the same rank-1 constraint as before in the setting of separate designs, linking the
HRF across conditions. We will refer to this model as Rank-1 GLM with separate designs (R1-GLMS). In this
case the objective function has the form Fri.s(h, B, w,r,Xp,y,Z) = 3 Zf ly —B8:iX%g;h—ri XL, h—Zw]|?,
where r € R? is a vector representing the activation of all events except the event of interest and will not be
used in subsequent analyses. We can compute the vector of estimates B as the solution to the optimization
problem

B, &, h, # = arg min Fry.s(h, B, w,r,Xp,y,Z)
hBwr )
subject to ||Bh||s =1 and (Bh, h,f) > 0

2.4. Optimization

For the estimation of rank-1 models on a full brain volume, a model is estimate at each voxel separately.
Since a typical brain volume contains more than 40,000 voxels, the efficiency of the estimation at a single
voxel is of great importance. In this section we will detail an efficient procedure based on quasi-Newton
methods for the estimation of R1-GLM and R1-GLMS models on a given voxel.

One approach to minimize is to alternate the minimization with respect to the variables 3, h and
w. By recalling the Kronecker product identities (Horn and Johnson| (1991, Chapter 4.3), and using the
identity vec(hBT) = B ® h we can rewrite the objective function to be minimized as:

1 1 1
SIy = Xp(Beh) - Zw|® = Jfly - Xp(Iloh)p - Zw|* = Sy - Xs(BeDh - Zw|* . (4

Updating h,  or w sequentially thus amounts to solving a (constrained) least squares problem at each
iteration. A similar procedure is detailed in (Degras and Lindquist} [2014]). However, this approach requires
computing the matrices Xg(B ® I) and Xg(I® h) at each iteration, which are typically dense, resulting in
a high computational cost per iteration. Note also that the optimization problem is not jointly convex in
variables h, 3, w, therefore we cannot apply convergence guarantees from convex analysis.

We rather propose a more efficient approach by optimizing both variables jointly. We define a global

variable z as the concatenation of (h, 3, w) into a single vector, z = vec([h, B, w]), and cast the problem
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as an optimization with respect to this new variable. Generic solvers for numerical optimization (Nocedal
and Wright| [2006) can then be used. The solvers that we will consider take as input an objective func-
tion and its gradient. In this case, the partial derivatives with respect to variable z can be written as
0FR1/0z = vec([0Fr1/0h,0FR1/0B,0Fr1/0w]), whose expression can be easily derived using the afore-

mentioned Kronecker product identities:

T (B @ DXy — X vec(h) — Za)
65[1;1 =— Iohh)X"(y — Xvec(hp”) — Zw)
O

a(il =—7Z"(y — Xvec(hp”) — Zw)

If instead a parametric model of the HRF is used as in Eq. , the equivalent partial derivatives can be
easily computed by the chain rule.

For the sake of efficiency, it is essential to avoid evaluating the Kronecker products naively, but rather
reformulate them using the above mentioned Kronecker identities. For example, the matrix M = X(I® h)
should not be computed explicitly but should rather be stored as a linear operator such that when applied
to a vector a € R¥ it computes M(a) = X(a ® h), avoiding thus the explicit computation of I ® .

Similar equations can be derived for the rank-1 model with separate designs of Eq. (R1-GLMS), in
which case the variable z is defined as the concatenation of (h, 3, w,r), i.e. z = vec([h, 3, w,r]). The gradi-
ent of Fry.g with respect to z can be computed as dFry.g/0z = vec([0Fr1.s/0h, 0FR1.s/0B, 0Fr1.s/0w, Fri.g/0r]).

The partial derivatives read:

%ﬁ = Zf _(XOBSi B; — Xllasfi)T(y - BiX%Sih - winlasih)
S}Z = —(Xfg,h)"(y — B;XBg h — w;Xkg h)

gi = -ZT(y - BiX%sih — wixllgsih)

Sf:. = —(Xgs,h)"(y — B:Xpg,h — wiXpg h)

A good initialization plays a crucial role in the convergence of any iterative algorithm. Furthermore,
for non-convex problems a good initialization prevents the algorithm from converging to undesired local
minima. We have used as initialization for the R1-GLM and R1-GLMS models the solution given by the
GLM with separate designs (GLMS). Since the GLM with separate designs scales linearly in the number of
voxels, this significantly reduces computation time whenever an important number of voxels is considered.

Whenever the design matrix Xg has more rows than columns (as is the case in both datasets we consider
with B the 3HRF basis), it is possible to find an orthogonal transformation that significantly speeds up the
computation of the Rank-1 model. Let Q,R be the “thin” QR decomposition of Xg € R"*  that is,
QR = Xp with Q € R"*% an orthogonal matrix and R € R¥**? 5 triangular matrix. Because of the
invariance of the Euclidean norm to orthogonal transformations, the change of variable Xg + Q”Xg,
y < QTy yields a Rank-1 model in Eq. with equivalent solutions. This reduces the size of the design
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matrix to a square triangular matrix of size dk x dk (instead of n x dk) and reduces the explained variable
y to a vector of size kd (instead of n). After this change of variable, the convergence of the Rank-1 model
is significantly faster due to the faster computation of the objective function and its partial derivatives. We
have observed that the total running time of the algorithm can be reduced by 30% using this transformation.

Some numerical solvers such as L-BFGS-B (Liu and Nocedal, [1989) require the constraints to be given
as box constraints. While our original problem includes an equality constraint we can easily adapt it to use
convex box constraints instead. We replace the equality constraint ||Bh|l., = 1 by the convex inequality
constraint ||Bh|. < 1, which is equivalent to the box constraint —1 < (Bh); < 1 supported by the
above solver. However, this change of constraint allows solutions in which h can be arbitrarily close to
zero. To avoid such degenerate cases we add the smooth term —||Bhl|3 to the cost function. Since there
is a free scale parameter between h and 3, this does not bias the problem, but forces Bh to lie as far as
possible from the origin (thus saturating the box constraints). Once a descent direction has been found by
the L-BFGS-B method we perform a line search procedure to determine the step length. The line-search
procedure was implemented to satisfy the strong Wolfe conditions (Nocedal and Wright, [2006). Finally,
when the optimization algorithm has converged to a stationary point, we rescale the solution setting to
ensure that the equality constraint. This still leaves a sign ambiguity between the estimated HRF and the
associated beta-maps. To make these parameters identifiable, the sign of the estimated HRF will be chosen
so that these correlate positively with the reference HRF.

We have compared several first-order (Conjugate Gradient), quasi-Newton (L-BFGS) and Newton meth-
ods on this problems and found that in general quasi-Newton methods performed best in terms of compu-
tation time. In our implementation, we adopt the L-BFGS-B as the default solver.

In Algorithm [1| we describe an algorithm based on L-BFGS that can be used to optimize R1-GLM and
R1-GLMS models (a reference implementation for the Python language is described in subsection Software).
Variable r is only used for the R1-GLMS method and its use is denoted within parenthesis, i.e. (,r), so that
for the R1-GLM it can simply be ignored.

The full estimation of the R1-GLM model with 3HRF basis for one subject of the dataset described in
section Dataset 2: decoding of potential gain levels (16 x 3 conditions, 720 time points, 41, 622 voxels) took
14 minutes in a 8-cores Intel Xeon 2.67GHz machine. The total running time for the 17 subjects was less

than four hours.

2.5. Software

We provide a software implementation of all the models discussed in this section in the freely available

(BSD licensed) pure-Python package hrf_estimation El

Shttps://pypi.python.org/pypi/hrf_estimation
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Algorithm 1 Optimization of R1-GLM and R1-GLMS models
Input: Given initial points B, € R¥, hg € R% wy € R? (,ry € R¥), convergence tolerance € > 0, inverse

Hessian approximation Hj.
Output: 3,,,h,,

1: (Optional): Compute the QR decomposition of Xg, QR = Xg, and replace X + Q' Xp,y + QTy

2: Initialization. Set m < 0, z < vec([hg, By, Wo(, ro)])

3: while ||V f|| > e do

4:  Compute search direction. Set p,, <+ —H,,Vf(hn,B,,, Wn(,ry)) by means of the L-BFGS algo-
rithm.

5. Set Zymt1 = Zm + YmPm, Where 7, is computed from a line search procedure subject to the box
constraints ||hy,|eo < 1.

6: m—m+1

7: end while

8: Extract R1-GLM(S) parameters from z,,. Set hy,, < z,,(1:d),B,, < zm(d+1: m+d)

9: Normalize and set sign so that the estimated HRF is positively correlated with a reference HRF: ¢, <

||hmHooSign(hz;href)a h,, + hm/‘]ma ﬁm — BQO

3. Data description

With the aim of making the results in this paper easily reproducible, we have chosen two freely available

datasets to validate our approach and to compare different HRF modeling techniques.

3.1. Dataset 1: encoding of visual information

The first dataset we will consider is described in (Kay et al., [2008; |Naselaris et al., 2009; |[Kay et al., [2011)).
It contains BOLD fMRI responses in human subjects viewing natural images. As in (Kay et al.l 2008]), we
performed prediction of BOLD signal following the visual presentation of natural images and compared
it against the measured fMRI BOLD signal. As the procedure consists of predicting the fMRI data from
stimuli descriptors, it is an encoding model. This dataset is publicly available from http://crcns.org

Two subjects viewed 1750 training images, each presented twice, and 120 validation images, each pre-
sented 10 times, while fixating a central cross. Images were flashed 3 times per second (200 ms on-off-on-
off-on) for one second every 4 seconds, leading to a rapid event-related design. The data were acquired
in 5 scanner sessions on 5 different days, each comprising 5 runs of 70 training images —each image being
presented twice within the run— and 2 runs of validation images showing 12 images, 10 times each. The
images were recorded from the occipital cortex at a spatial resolution of 2mm x 2mm x 2.5mm and a temporal
resolution of 1 second. Every brain volume for each subject has been aligned to the first volume of the first
run of the first session for that subject. Across-session alignment was performed manually. Additionally,
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data were temporally interpolated to account for slice-timing differences. See (Kay et al., |2008) for further
preprocessing details.

We performed local detrending using a Savitzky-Golay filter (Savitzky and Golay], |1964) with a poly-
nomial of degree 4 and a window length of 91 TR. The activation coefficients (beta-map) and HRF were
extracted from the training set by means of the different methods we would like to compare. The training set
consisted of 80% of the original session (4 out of 5 runs). This resulted in estimated coefficients (beta-map)
for each of the 70 x 4 images in the training set.

We proceed to train the encoding model. The stimuli are handled as local image contrasts, that are
represented by spatially smoothed Gabor pyramid transform modulus with 2 orientations and 4 scales.
Ridge regression (regularization parameter chosen by Generalized Cross-Validation (Golub et al.l [1979))
was then used to learn a predictor of voxel activity on the training set. By using this encoding model and
the estimated HRF it is possible to predict the BOLD signal for the 70 images in the test set (20 % of the
original session). We emphasize that learning the HRF on the training set instead of on the full dataset is
necessary to avoid overfitting while assessing the quality of the estimated HRF by any HRF-learning method:
otherwise, the estimation of the HRF may incorporate specificities of the test set leading to artificially higher
scores.

In a first step, we perform the image identificat