A. Adcroft and D. Marshall, How slippery are piecewiseconstant coastlines in numerical ocean models? Tellus 50A, pp.95-108, 1998.

A. Adcroft, C. Hill, and J. Marshall, Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model, Monthly Weather Review, vol.125, issue.9, pp.2293-2315, 1997.
DOI : 10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2

B. Barnier, G. Madec, T. Penduff, J. Molines, A. Treguier et al., Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn, pp.5-6543567, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00183257

E. Blayo, A regional quasigeostrophic circulation model of the western North Atlantic: a model-data comparison, Journal of Marine Systems, vol.5, issue.6, pp.425-443, 1994.
DOI : 10.1016/0924-7963(94)90006-X

E. Chassignet and D. Marshall, Gulf Stream separation in numerical ocean models, pp.39-61, 2013.
DOI : 10.1029/177GM05

S. Danilov, G. Kivman, and J. Schrter, A finite-element ocean model: principles and evaluation, Ocean Modelling, vol.6, issue.2, pp.125-150, 2004.
DOI : 10.1016/S1463-5003(02)00063-X

F. Dupont, D. Straub, and C. Lin, Influence of a step-like coastline on the basin scale vorticity budget of mid-latitude gyre models, Tellus A: Dynamic Meteorology and Oceanography, vol.27, issue.3, pp.255-272, 2003.
DOI : 10.3402/tellusa.v55i3.12094

J. Gilbert and C. Lemarechal, Some numerical experiments with variable-storage quasi-Newton algorithms, Mathematical Programming, vol.11, issue.2, pp.407-435, 1989.
DOI : 10.1007/BF01589113

S. Griffiths, Kelvin wave propagation along straight boundaries in C-grid finite-difference models, Journal of Computational Physics, vol.255, pp.639-659, 2013.
DOI : 10.1016/j.jcp.2013.08.040

L. Hascoët and V. Pascual, Tapenade 2.1 user's guide INRIA, http://www.inria.fr/rrrt/rt- 0300.html Iakovlev N (2012) On the simulation of temperature and salinity fields in the arctic ocean, Izvestiya, Atm. and Oc. Phys, vol.48, issue.1, pp.86-101, 2004.

E. Kazantsev, Identification of an optimal derivatives approximation by variational data assimilation, Journal of Computational Physics, vol.229, issue.2, pp.256-275, 2010.
DOI : 10.1016/j.jcp.2009.09.018

URL : https://hal.archives-ouvertes.fr/inria-00388884

E. Kazantsev, Optimal boundary discretization by variational data assimilation, International Journal for Numerical Methods in Fluids, vol.128, issue.3, pp.1231-1259625, 2011.
DOI : 10.1002/fld.2240

URL : https://hal.archives-ouvertes.fr/inria-00388862

E. Kazantsev, Optimal boundary conditions for ORCA-2 model, Ocean Dynamics, vol.118, issue.2, pp.943-959, 2013.
DOI : 10.1007/s10236-013-0639-8

URL : https://hal.archives-ouvertes.fr/hal-00764570

Y. Leredde, J. Lellouche, J. Devenon, and I. Dekeyser, On initial, boundary conditions and viscosity coefficient control for Burgers' equation, International Journal for Numerical Methods in Fluids, vol.26, issue.1, pp.113-128, 1998.
DOI : 10.1002/(SICI)1097-0363(19980715)28:1<113::AID-FLD702>3.0.CO;2-1

G. Madec, Nemo ocean engine. Tech. Rep. 27, Note du Pôle de modélisation de l'Institut Pierre Simon Laplace Mesinger F, Arakawa A (1976) Numerical methods used in Atmospheric models, 2012.

G. Roullet and G. Madec, Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models, Journal of Geophysical Research: Oceans, vol.97, issue.C10, pp.927-23942, 2000.
DOI : 10.1029/2000JC900089

URL : https://hal.archives-ouvertes.fr/hal-00772157

J. Verron and E. Blayo, The No-Slip Condition and Separation of Western Boundary Currents, Journal of Physical Oceanography, vol.26, issue.9, pp.1938-1951, 1996.
DOI : 10.1175/1520-0485(1996)026<1938:TNSCAS>2.0.CO;2