
HAL Id: hal-00953355
https://inria.hal.science/hal-00953355

Submitted on 28 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IOWAState: Models and Design Patterns for
Identity-Aware User Interfaces Based on State Machines

Yann Laurillau

To cite this version:
Yann Laurillau. IOWAState: Models and Design Patterns for Identity-Aware User Interfaces Based on
State Machines. Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems (EICS 2013), 2013, New-York, pp.59-68, �10.1145/2480296.2480299�. �hal-00953355�

https://inria.hal.science/hal-00953355
https://hal.archives-ouvertes.fr

IOWAState: Models and Design Patterns for Identity-Aware
User Interfaces Based on State Machines

Yann Laurillau

University of Grenoble, UPMF, CNRS, LIG Laboratory

110 av. de la Chimie, Domaine Universitaire, BP 53, 38041 Grenoble cedex 9, FRANCE

{first name}.{last name}@imag.fr

ABSTRACT

The emergence of interactive surfaces and technologies

able to differentiate users allows the design and

development of Identity-Aware (IA) interfaces, a new and

richer set of user interfaces (UIs). Such user interfaces are

able to adapt their behavior depending on who is

interacting. However, existing implementations, mostly as

software toolkits, are still ad-hoc and mostly based on

existing GUI toolkits which are not designed to support

user differentiation. The problem is that the development of

IA interfaces is more complex than the development of

traditional UIs and still requires extra programming efforts.

To address these issues, we present a set of implementation

models, named IOWAState models, to specify the behavior

as state machines, the architecture and the components of

IA interfaces. In addition, based on our IOWAState models

and a classification of IA user interfaces, we detail a set of

design patterns to implement the behavior of IA user

interfaces.

Author Keywords

Identity-aware user interfaces, Interactive surfaces,

Software design patterns, Architecture model, State

machine model.

ACM Classification Keywords

H.5.2. User Interfaces: Graphical User Interfaces,

Interaction styles, Prototyping, User-Centered design.

H.5.3. Group and Organization Interfaces: Web-based

interaction. D.2.2. Design Tools and Techniques: User

interfaces.

INTRODUCTION

Research on multi-touch interactive surfaces, in particular

interactive tabletops, is now well established in the fields of

Human-Computer Interaction (HCI) and of Computer-

Supported Cooperative Work (CSCW). The directness of

interaction and the multiuser capabilities of tabletops may

explain the growing interest for these systems. Currently,

several technological solutions are available [12,32]

including commercial ones [9,17]. Among these

technologies, few are able to differentiate users touching

the surface [9,16,24,32].

In conjunction with the growing number of technological

solutions allowing user identification and differentiation

(e.g., [1,16]), work is done on the development of identity-

aware (IA) user interfaces, taking advantage of user

differentiation and showing the capabilities and benefits of

such UIs (e.g. [26,27]). For instance, SIDES [25] is an IA

multi-user tabletop-based interactive system designed to

develop effective social skills. It shows that such category

of technology is helpful for a therapeutic purpose

considering teenagers with Asperger’s syndrome. In

particular, IA widgets requiring synchronous actions were

key in its success.

As Identity-Aware User Interfaces (IAUIs) are more

complex than traditional and single-user interfaces, their

development is still challenging. We identify several issues:

Lack of implementation models and guidelines:

developing IAUIs requires extra programming efforts due

to the lack of models and of capitalization of best practices

(e.g. guidelines, design patterns). We observed that existing

IA applications are mostly developed from scratch and,

similarly to the development of multi-touch gesture-based

interactive systems, developers must deal with low-level

events.

User interfaces’ behavioral model split across the code:

traditional UI toolkits (e.g. Java’s Swing), including UI

toolkits that support user differentiation (e.g. DiamondSpin

[28] toolkit is based on Java’s Swing), massively rely on

the well-known callback-based programming model:

developers have to write a bunch of callbacks to handle

each input event for each UI component. Thus, they must

maintain the state of the UI component across these

callbacks which usually leads to produce “spaghetti” of

code [21].

Dealing with concurrent inputs and differentiated

outputs: although a traditional UI receives and deals with

events generated by the same user, an IAUI has to manage

input events generated by different users due to

simultaneous actions, sometimes concurrent. Furthermore,

such an UI must maintain a much more complex state

model in order to produce consistent and customized

outputs.

At implementation level, although most of the work done

focuses on technical issues to allow user differentiation

such as dedicated software toolkits, we investigate the

building of software models that would help and drive the

development of IAUI components. In particular, we

investigate the use of state machines as a means to address

the two last issues.

This paper is structured as follows. First, we introduce an

example to illustrate IAUIs. Then, we present the

IOWAState models, our first contribution: a set of models

to specify the behavior, the main components and the

architecture of IAUI components. Based on our IOWAState

models, we detail our second contribution, seven design

patterns to implement the behavior of IAUI components,

and our methodology. We conclude with a discussion and

perspectives.

ILLUSTRATIVE EXAMPLE

 (a) (b) (c)

Figure 1: Cooperative gesture to transfer ownership [18].

Let us consider the following scenario: two users, Green

and Blue, are interacting simultaneously on a user-

differentiating multitouch surface, manipulating digital

artifacts (widgets, images, shapes, etc). Some are public

while others are private. Thanks to user differentiation,

supporting privacy, private artifacts are accessible by their

owner only. However, user Green wants to give an image

he/she owns to user Blue. Thanks to user differentiation, the

users Green and Blue just have to accomplish a cooperative

gesture [18] to transfer ownership. As shown in Figure 1,

having first activated ownership transfer mode, (a) user

Green touches the image he/she wants to relinquish; (b)

user Blue touches Green’s image to indicate that he/she will

be the next owner; (c) ownership is granted to user Blue

when user Green releases his/her finger from the surface.

This example is used further in the part about design

patterns.

BACKGROUND AND RELATED WORK

As underlined in introduction, multi-touch technologies,

especially interactive surfaces, are intensively studied and

are now well known in our research communities.

Therefore, in this paper we concentrate on IA User

Interfaces and on development tools supporting user

differentiation.

Identity-aware user interfaces

In the 90’s, researchers started to investigate the

development of groupware using a single and shared

display: Single Display Groupware systems (SDG) are

ancestors of actual research on interactive surfaces such as

tabletops: co-located users were able to interact

simultaneously using multiple input devices [29].

Therefore, assigning an input device per user allows user

identification and thus the development of identity-aware

applications. The most basic example is multi-pointers on a

shared display: each user owns a pointer and is allowed to

manipulate simultaneously the shared UI elements

displayed on the screen. In particular, MMM [4], Pebbles

[22], and Kidpad [10] are usually considered in the

literature as the very first systems implementing and

illustrating the concept of SDG. These systems are the first

to take advantage of user identification to develop identity-

aware interfaces.

Proxy-Sketch [1] is another example of identity-aware

interface dedicated to the creation of GUI prototypes. User

identification is used to associate owners to content. It also

supports casual observers (i.e. not logged in) that prevent

from accidental changes.

Idlenses [27] is an identity-aware interaction technique that

revisits magic lenses to provide a moveable personal area.

Once identified, users benefit of personal tools that support

access control to restricted and personal data, personalized

actions such as automatic filling of web forms with

personal data, a private clipboard, etc.

Tse et al. [30] have investigated multi-user and multimodal

identity-aware interactive systems for gaming, based on

DiamondTouch [9]. The underlying mechanism for

multimodal fusion uses user identification to link speech

with gesture.

To capitalize the work done in this area, Ryall et al. [26]

propose the conceptual iDwidgets framework. The authors

define identity-aware widgets (i.e. called iDwidgets for

identity-differentiated widgets) as an extension of “the

widget concept by including identity as an input parameter,

which lets us customize interactions in a variety of ways”.

For instance, an identity-aware paintbrush tool will adapt its

color or stroke size according to the user.

Toolkits supporting user differentiation

In order to facilitate the development of identity-aware

interfaces and widgets, several toolkits have been designed

and developed to support user differentiation.

The very first toolkits used peripherals as a means to

differentiate users. The implicit user differentiation

mechanism was “one input device, one user; one user, one

input device”. For instance, Multiple Input Devices (MID)

[13] is a software library built on top of Java. In order to

support multiple mice, MID revisits the underlying Java

event mechanism. Therefore, it allows developers to

implement identity-aware interfaces based on the mouse ID.

Such a piece of information is implemented as an extra

attribute of event objects.

SDGToolkit [31] is an extension of MID as it supports

multiple keyboards. At UI level, the toolkit provides

mechanisms to support orientation in tabletop setups. This

toolkit is built on top of the .NET framework and is written

in C#. Similarly to MID, events generated by input devices

are associated to devices based on a device ID. It allows the

use of standard widgets provided by the .NET framework to

develop identity-aware interfaces as well to develop its own

identity-aware widgets from scratch. This toolkit gave rise

to IdenTTop [24], adding support for any multi-touch

devices and support for a Polemus motion tracker. In

addition, IdenTTop proposes a development framework for

identity-aware applications based on a set of software

components.

For touch surfaces, especially DiamondTouch [9],

DiamondSpin [28] is the most well-known toolkit. It is built

on top of Java and extends Java’s Swing GUI toolkit to

support widget orientation. User identification is achieved

using a similar mechanism as SDGToolkit: events

generated by touches are associated to users by the way of a

specific attribute: a user ID. In particular, the toolkit

provides identity-aware frames (DSFrame component)

allowing users to customize the appearance: a frame can be

rotated, zoomed or resized. Similarly to SDGToolkit, it

allows developers to reuse standard Java’s Swing

components in a DSFrame. Compared to DiamondSpin, the

GIL Library (gil.imag.fr) is another toolkit based on

DiamondTouch but built on top of Tcl/Tk

While the java-based T3 toolkit focuses on high-resolution

tabletop interfaces using wireless pens as devices for user

identification [32], TouchID [16] goes beyond user

identification as it investigates user-, hand-, and handpart-

aware tabletops. Similarly to SDGToolkit and IdenTTop,

TouchID is build on top of the .NET framework and based

on the Microsoft Surface touch table [17].

IOWASTATE MODELS

As our model is intended for the design and the

implementation of Identity-Aware UIs (IAUI), the

IOWAState model encompasses three modeling primitives:

• A behavior model based on standard state machine

models to describe the behavior of an IAUI. As detailed

further, we used this modeling primitive to identify

recurrent behavior patterns. In particular, we highlight

how user differentiation is achieved in terms of state

machine.

• A component model that identifies the main components

of an IAUI and their relationships. In particular, this

model highlights how we handle multiple state

machines in order to allow parallel or concurrent user

actions on an IAUI.

• An architecture model to describe the structure of an

IAUI component. It illustrates how low-level events are

processed to produce high-level events and are

propagated to sub-components.

In the following, as the IOWA component model is based

on the Model-View-Controller (MVC) design pattern, we

will refer to it.

IOWA Behavior model

We chose to model and implement the Model part using

hierarchical state machines (HSM), a derivative of finite

state machines (FSM). Since Newman’s work [23], user

interfaces are often specified using state machines

[15,21,33]. In addition, several works have demonstrated

the feasibility and the benefits implementing state machine-

based UIs [1,5,14].

As state machines are well suited to specify mode-driven

interactions, we allow the Model to encompass several state

machines, one per user, and support their parallel execution.

Indeed, collaborative settings such as tabletops enable the

interleaving modal actions.

In addition, using state machines facilitated the comparison

of identity-aware widget’s implementations and helped us

to identify classes of identity-aware widgets based on their

implementation model.

Figure 2: Example of state model of a button.

A state machine is a combination of states and transitions

connecting states. Using UML statecharts, transitions are

labeled according to the following syntax: trigger [guard] /

effect. Trigger is an event name, guard is a set of conditions

and effect is an action executed when the transition is

triggered. Figure 2 shows a classic state model of a button

constituted of two states: disarmed: the button is raised;

armed: the button is pushed. Such a state model responds to

the press and release events. For instance, if the active state

is “Armed” while a release event occurs, the do_action() is

fired and the button goes in the “Disarmed” state.

Finally, the main advantage of Hierarchical State Machines

is to facilitate the control of the state explosion problem as

it allows the refinement of states as finite state machines.

Indeed, specifying a state model using HSMs is a top-down

approach like problem solving: an overall state model is

decomposed into FSMs as problems are decomposed into

smaller problems. For instance, HSMs are part of UML to

specify state machines.

IOWA Component model

The IOWA component model slightly differs from the

MVC design pattern as an IOWA Component inherits from

an IOWA StateMachine (i.e. Model) and an IOWA UI (i.e.

View). The main advantage is to present a component that

looks externally as a whole, hiding the model and view

!"#$%&'()%&'(

!"#$$%&'$%'()*

+#,#-$#%*%./0-12'/(34

parts, while preserving modularity and loose coupling

between the View and the Model.

In order to support the design of IAUIs, user differentiation

is first achieved at the Model level. As shown in Figure 3,

the Model is an instance of an IOWA StateMachine that

describes the behavior of an IAUI, as explained in the

previous part, with an IA state machine. Such a state

machine is hierarchical as each state (i.e. IOWA State) may

be described as a hierarchy of states. Transitions between

states are triggered by events sent through a post()

operation. Events are propagated in the state hierarchy. As

events carry the identity of the user (i.e. user ID) who

performs the associated action, this mechanism allows the

design of IA state machines.

Figure 3: IOWAState's component model.

In order to support the interleaving of different user’s

actions and concurrent actions, although an IOWA

Component is already statemachine, an IOWA Component

may handle a set of IOWA StateMachines, one per user.

Indeed, each event received by an IOWA Component and

processed by the post() operation is dispatched to the state

machine associated with the user ID that produces such an

event.

An IOWA State component is responsible for handling

high-level events supplemented with a user ID and

achieving user-differentiation. Indeed, depending on the

event type and the user ID, an IOWA State component

verifies conditions on transitions associated to it: if a

condition is verified, this component indicates to the related

IOWA StateMachines component what the new state is.

As part of the View, an IOWA UI produces an output

representation to the user. It defines the look and feel of an

IAUI. In this model, similarly to HsmTk [5], an IOWA UI is

a composition of IOWA UIs, one per state. For input events,

an IOWA UI is associated with an IOWA Event Processor

that receives low-level events and produces high-level

events sent to the IOWA Component through a post()

operation. Such an IOWA Event Processor may be seen as a

pipeline of event filters.

IOWA Architecture model

Figure 4: IOWAState's architecture model.

As shown in Figure 4, the IOWA architecture model is

layered according to the MVC design pattern. As explained

previously, an IOWA UI and an IOWA Event Processor

constitutes the View while an IOWA StateMachine

constitutes the Model. They are assembled to constitute an

event processing chain that processes user' input events and

generates an output representation. As an IOWA Component

may be a composition of sub-IOWA Component, in addition

to the dispatch of events to the state machine, the IOWA

Event Processor dispatches events to the sub-components.

Furthermore, the state machine may generate events that are

also dispatches to the sub-components.

IMPLEMENTING IOWASTATE MODELS

The IOWAState Models, in particular the IOWA behavior

model, may be directly specified with an object-oriented

programming language that allows a one-to-one

correspondence between the IOWAState Models and the

implementation. We chose such an approach because, as

underlined in introduction, IAUIs are more complex to

design and to implement than traditional single-user UIs.

The implementation step is usually complex as existing

toolkits that support user differentiation mostly rely on

usual WIMP toolkits (e.g. Java's Swing). To address this

issue, in particular about the implementation of state

machines, existing works advocate a developer-centric

approach claiming a tight integration of models with

dynamic programming languages [2,5,11]. Indeed, a state

machine leads to produce code easier to read and to

maintain. In addition, it supports a better reusability and

extensibility as we may easily add, remove or modify states

and transitions thanks to the inheritance mechanism

supported by object oriented programming languages.

In order to demonstrate the validity of our IOWAState

models, without giving implementation details, we

implemented eight very different IAUI components.

Although existing implementations focus on customization

of appearance [16,24,28,30,32] (e.g. orientation to a

particular user), we focus on component’s behavior in terms

of internal/external functionality and group input [26].

Precisely, in order to cover the largest range of IAUI

component classes as identified by Ryall et al. [26], the

components we implemented are taken and adapted from

[18,19,20,26].

!"#$%&'()*+',%-

./011',%2$%3%')()

4567)8%3%'

!"#$%
&'(')*(+,-.)

!"#$%/!

!"#$%&'(')

!"#$%
01231.).'

!"#$%&'(&)&*+,

45).'

!"#$%&'(*+',%-

!9:$"3%;<&'(*+',%-

%!"#$%45).'%
361+)7716

!"#$

%&'#(

-

-

-

-

-

!"#$%&!

!"#$%
'()*(+,+-

!"#$%./,+-
*0(1,22(0

!"#$%
3-4-,54167+,

!"#"$
%&%'$(

)'#"$
%&%'$(

*+,-./%&%/
%&%'$(

For instance, one of the eight components we implemented

is a multi-user slider having a differentiated behavior,

performing the same action (i.e. selecting a value) whoever

the user is. However, it behaves with different styles

depending on the user’s identity. For instance, one user may

slide the cursor from tick to tick and select a value on a

discrete scale, another user would slide the cursor

continuously.

Another example is a cumulative voting component

allowing different users clicking on a same button to

perform an action. Achieving the action requires a

minimum number of users performing the interaction.

The height IAUI components we implemented are

developed in Python, to be used with a Diamondtouch

device [9]. In order to be independent from any GUI toolkit

and their associated programming paradigm, we used basic

graphic primitives to draw the components (i.e. OpenGL

rendering engine). In order to support identity-awareness,

we rely on the user-differentiation mechanism provided by

the Diamondtouch device [9], able to differentiate up to

four users. The low-level events sent by the device are

supplemented with a user ID represented as an integer value

in a range of 0-3. It allowed us to implement an event loop

that sends high-level events supplemented with a user ID to

the user interface and thus to our IAUI components.

DESIGN PATTERNS

Methodology

In order to identify recurring design patterns for IAUIs, we

defined and followed a twofold method. The first part of

this method consists in analyzing and in reverse-

engineering the source code of existing identity-aware

widgets to detect recurring implementation patterns. The

second part of this method consists in developing identity-

aware widgets using state machines to model and

implement widget’s behavior. We chose to reuse and adapt

existing identity-aware widgets that are the ones described

in the previous section. Obviously, these developments are

on our IOWA state models.

Code-based analysis of existing IA widgets

Concomitantly with the development of the eight widgets

detailed in the previous section, we analyzed the code of a

set of existing prototypes that includes IA widgets. We

focused on prototypes developed with toolkits allowing

user identification: SDG [31], DiamondSpin [28], T3 [32],

TouchID [16] and GIL [3]. We did not consider the

IdenTTop toolkit [24] because the code is not publicly

available. Although several IA widgets and the related

source code are available online, we also requested

additional examples from the authors of the DiamondSpin

and GIL toolkits.

We analyzed seven IA widgets taken from SDG,

DiamondSpin, and GIL. We found no relevant widget for

the T3 and TouchID toolkits. The source code was reversed

engineered to identify implementation patterns of identity-

aware widgets. First, we carefully examined the code as

follows: (1) identification of callbacks or related methods

managing user input events supplemented with a user ID;

(2) identification of attributes used to store the component

state; (3) identification of control structures that use the

user ID to update the attributes related to the component

state. Then, we modeled IA widgets using state machine

representations. In order to verify our models, we compared

the models at runtime. In order to classify state machines

and to derive patterns, based both on our developments and

on the analysis of existing components, we focused on

similarities and differences in terms of states (e.g.

associated states) and transitions (i.e. conditions).

The IA widgets and IA interaction techniques we analyzed

are:

• From SDG toolkit, a multi-user button (SDGButton)

allowing two interaction modes: (1) restricted

interaction to the first user pushing the button (one-

user-at-a-time); (2) cumulative effect; a multi-user

check button (SDGCheckButton) that paints parts of its

border with the color related to the users that checked

it; a multi-user slider with multiple cursors

(SDGTrackBar), one per user.

• From DiamondSpin toolkit: an identity-aware and

moveable menubar (DSMenuBar); a multi-user chess

board [8] (RealTimeChess); a RingMenu.

• From GIL toolkit: a cooperative design application to

assemble shapes in order to design a building.

Design patterns

Figure 5: Design pattern graph.

As shown in Figure 5, our method leads us to identify three

categories of patterns related to:

• Individual actions: these patterns deal with ownership,

i.e. how a UI component is owned by one or multiple

users. We identify three kinds of ownership: (a) public

UI components that are free and not owned; (b) private

UI components that are owned by one or multiple users

and that can exclusively be used by the owners; (c)

!"#$%& !'%()*+

,"-"$)*%(+

.+-/0')'%$12
/'%()*+

34*+'$+)(%45

,00/+')*%(+
6"*")$$1
+7&$"8%(+

!"#$%&'()

*$+,$#-(./0.1-(2#& 3.%.//$/0.1-(2#&

!"#$"%&'

&!
!"#$"%&'

&!
(!&()""$&(*

(!&()""$&(*

34
9
%(
%9
"
)
$2
)
&
*%
0
4
8

:
'0
"
/
2)
&
*%
0
4
8

temporarily UI components that are free UI

components owned for a limited amount of time.

• Group actions to achieve a sequence of actions: these

patterns identify UI components that require multiple

users to achieve a group action: (a) cumulative UI

components that take into account the number of users

whatever the sequence of action is; (b) cooperative UI

components that imply a well-defined and ordered

sequence of actions.

• Group actions allowing parallel execution of actions:

we identify two situations: (a) the interleaving of

actions with no concurrency; (b) mutually exclusive UI

components to deal with concurrency.

In the following, we detail each design pattern using

Borchers’ pattern language [6]. In addition, illustrations of

state machines are given using UML statecharts.

Public IAUI

(a) (b)
Figure 6: (a) SM model for Public IAUI;

(b) TeamTag centralized control [19].

Context: in order to achieve an individual task, different

users simultaneously interact with a same UI element (e.g. a

button) of the shared workspace to issue a command that

acts on an artifact associated with her/him.

Problem: First, traditional widgets are single-user and do

not support simultaneous actions. Secondly, the display

may offer a limited amount of space: replicated UI elements

would clutter the interacting space and would waste pixels.

Thirdly, simultaneous but opposite actions on a same UI

element would produce an inconsistent visual

representation or have no effects: for instance, a user is

pressing his/her finger on a button that should look armed

while another user releases his/her finger on the same

button that should look disarmed.

Solution: a single instance of an identity-unaware state

machine composed of a single state would support

simultaneous actions: transitions are labeled without uid-

based conditions. Thus, user differentiation is achieved by

an external function triggered when an action is performed

on the UI (i.e. associated to the triggered state transition

such as the function do_action(uid) shown in

Figure 6 (a)). Such a function takes the user id associated to

a user event as an argument: different actions are executed

according to the user id.

To support presentation consistency for simultaneous

actions, a unique output representation is coupled with the

state machine because the state machine is composed of a

single state.

Examples: TeamTag's IA controls [19] (Figure 6 (b)).

Private IAUI

Context: an interactive surface is partitioned into shared

and private territories, allowing users to interact with

private artifacts located in their private territory and to

perform individual tasks.

(b)

Figure 7: (a) SM model for Private IAUI;

(b) Swing widgets in a DSFrame [28].

Problem: an interactive surface is naturally a public shared

resource as everything is visible and potentially free,

including private territories. Tacit social rules are the most

common mechanism that preserves private territories.

Solution: an IAUI exclusively associated to an owner,

based on his/her user id, prevents other users to interact

with such private UI elements. All transitions of the state

machine associated with the private IAUI must be labeled

with uid-based conditions: when an event is received, a

transition is triggered if the user ID carried by the event

matches the owner ID (e.g. condition [uid == owner] as

shown in red in Figure 7 (a)). We may consider that an

owner is associated to such an IAUI element at instantiation

time.

Examples: Swing widget in a DSFrame [28] (Figure 7 (b)),

IdLenses [27].

Temporarily Private IAUI

Context: different users simultaneously access to a shared

and free UI element such as a widget or an artifact (e.g.

digital photo).

Problem: although some UI elements are public and freely

available, some UI elements may only support interactions

for one user at a time.

Solution: an IAUI element temporarily owned by the

current user interacting with the IAUI: ownership is granted

!"#$%&'"(()*+),-$

!"#"$%"&'&()%&)*+,-./$01).*2"%,3

!"#$%&'(

)%&'(

!"#$$%

*+"(,--,./0'%1%

&#'#($#%

*+"(,--,./0'%1%

)%*+,(-./+01+"(2

!"#

(b)

Figure 8: (a) SM model for Temporarily Private IAUI;

(b) Single-user lock SDGButton [31].

!"#$%&'(

)%&'(

!"#$$%

*+,-'%.-+/.#'/0%

1.+,-'%.23.4"(

&#'#($#%

*4"(.33.+,-'%0%

)%*+,(-./+014"(23

4-#'/.+,-'%

!"#

to the very first user that interacts with the IAUI element;

ownership is released when the user action is completed. To

support such mechanism, the state machine associated to a

temporarily private IAUI element should be designed based

on two categories of transitions: transitions labeled (a)

without and (b) with uid-based conditions. The first

category allows any user to take ownership on a free IAUI

element (e.g. condition [owner not set] as show in red

in Figure 8 (a)): when this kind of transition is triggered, the

current user is then marked as the current owner of the

IAUI element he/she is manipulating (e.g. effect

owner := uid as shown in green in Figure 8 (a)).

Therefore, the IAUI element is considered as private.

Similarly to Private IAUI, the remaining transitions are

related to the second category (e.g. condition

[uid == owner] as shown in red in Figure 8(a)).

However, when triggered, at least one transition of the

second category must release ownership (e.g. effect unset

owner as show in green in Figure 8 (a)).

Examples: DSMenuBar [28], Single-user lock SDGButton

[31] (Figure 8 (b)).

References: PUBLIC IAUI, PRIVATE IAUI.

Cumulative IAUI

Context: different users are interacting with the same UI

element to perform a group and synchronized action.

Problem: the UI element must consider how many users

(i.e. critical mass) are interacting to achieve a group action

(e.g. majority). Furthermore, this UI element must

remember who is interacting to take into account each user

only once: for instance, a user touching a button with two

different fingers must be counted as a single touch.

Solution: an IAUI element that maintains a list of users

already interacting with it. This list is updated when

transitions of the associated state machine are triggered.

Three categories of conditions are observed:

• Conditions verifying if a user is not already in the list

to avoid duplicate entries (e.g. condition [uid ∉ P]

as shown in Figure 9 (a)). Consequently, for transitions

that verify such a condition, the associated action

consists in adding the new interacting user to the list

(e.g. condition [P := P ∪ {uid}] as shown in

Figure 9 (a)).

• Conditions verifying if a user is already on the list (e.g.

condition [uid ∈ P] as shown in Figure 9 (a)) when

the user interaction is completed. Consequently, for

transitions that verify such a condition, the associated

action consists in removing the associated user from

the list (e.g. condition [P := P \ {uid}] as shown

in Figure 9 (a)).

• Conditions verifying if no more users are interacting

with the IAUI element to maintain state consistency

(e.g. condition [|P| > 1] where |P| denotes the

cardinality of set P as shown in Figure 9 (a)). Such a

condition can be seen as threshold to reach in order to

select a state transition in case of alternatives.

Although a Public IAUI element responds to individual

actions, a Cumulative IAUI element responds to group

actions. Similarly, there is no owner associated with it.

Examples: SDGButton [31] (Figure 9 (b)), Voting button

[20], SIDES [25], SDGTrackBar [31].

References: PUBLIC IAUI.

Cooperative IAUI

Context: different users are interacting with the same UI

element to perform a synchronized group action, involving

a limited number of users. Achieving the group action

requires to execute actions in a certain order (i.e. ordered

sequence of actions). Depending on the number of users or

depending on who is interacting, the UI element behaves in

different ways (modes).

(b)

Figure 9: (a) SM model for Cumulative IAUI;

(b) Cumulative SDGCheckButton [31].

!"#$$

%&!"#$"%"&'(")"!

'#(#)$#&

*&'(" "!"

""""+&,"!","$$"-.

%&*+,)-./+01&'(/"-2

0'12345(

6345(
'#(#)$#&

*&'(" "!&

+","!","7"-.

%&!"#$"!"""%"&'(")3

*+,)-./+01&'(/","!",2

!"#$$

*&'(" "!.

%&!"#$"!" "%"&'(")

!"#

(a) (b)
Figure 10: (a) SM model for Cooperative IAUI; (b) Cooperative gesture [17].

!"#$ %&'()#'*+(,

!"#$$

%&-./0.-. .1.2+".3

#'(#"&%.-./0. &

45*'*+(,

)*(+*'&62+". .-7

!"#$$&62+". .-7

%&-./0.-. .1.2+".3

)*(+*'

62+".00.-6877
,#-#.$#&62+". .-7

%&-./0.-.!.1.2+".3

,#-#.$#&62+". .-7

%.-./0.&

Problem: the UI element must consider how many users

are interacting to achieve a group action. Furthermore, this

UI element must remember who is interacting to take into

account each user only once. As the UI element behaves

differently depending on who is interacting, several states

must be considered to represent the sequence of actions.

Solution: an IAUI element’s state machine composed of an

ordered set of states. This set corresponds to the ordered

sequence of actions that the users must execute to achieve

the group action. Each state is associated to different

behaviors of the IAUI element. User differentiation is

performed to (1) limit the number of users interacting with

the IAUI element using a list similarly to a Cumulative

IAUI element; (2) to associate a user for different modes of

interaction using uid-based conditions (e.g. condition

[uid == P[1]] as shown in red in Figure 10 (a)). As the

number of users allowed to interact with a Cooperative

IAUI element is limited, such a component may be seen as

Temporarily private IAUI element.

Examples: Cooperative gesture [18] (Figure 10 (b)),

Rotating shape (Figure 1).

References: TEMPORARILY PRIVATE IAUI,

CUMULATIVE IAUI.

Interleaving IAUI

Context: different users are simultaneously interacting in a

shared workspace on different artifacts. Some of the users

may execute destructive actions (e.g. delete).

Problem: using a global mode (i.e. the same mode for all)

in a shared workspace does not support parallel moded

interactions. For instance, if one person is in an erasing

mode, other persons cannot be in a different mode such as

drawing: once the erase mode is activated, the next selected

stroke would be erased.

Solution: an IAUI component’s state machine managing a

set of multiple instances of the same sub-state machine that

are running in parallel (Figure 11 (a)). The master state

machine intercepts the events and, as a proxy, dispatches

events to each instance. Each instance is owned (i.e.

private) by a user (e.g. conditions [uid == user_N] on

transitions as shown in red in Figure 11 (a)) and is

responsible for the management of moded interactions.

Such a mechanism allows the interleaving of actions and

avoids concurrent actions, even for destructive actions.

Examples: DTMap [26] (Figure 11 (b)).

References: PRIVATE IAUI.

(b)
Figure 11: (a) SM model for Interleaving IAUI; (b) DTMap.

Mutually exclusive IAUI

Context: Two users are interacting simultaneously with the

same UI component.

Problem: a user must wait for the first user already

interacting to end up taking his/her turn and then

accomplish his/her own action.

Solution: similarly to an Interleaving IAUI component, a

Mutually exclusive IAUI component is based on a master

state machine that manages several sub-state machines

running in parallel. In addition, each sub-state machine

implements an Idle/Active mechanism: the idle state is

reached when a user is not interacting; the active state is

reached when a user is interacting. For the latter, two sub-

states are considered in order to support mutual exclusion

and the fact that a user must wait his/her turn: two sub-sub-

states are considered as show in Figure 12 (a): an operative

state that locks the IAUI component (i.e. ownership taken)

until the interaction is ended up (i.e. ownership released); a

non-operative state that corresponds to a stand-by period.

Examples: Waiter's Diamondspin mechanism [28],

RingMenu [8] (Figure 12 (b)).

References: TEMPORARILY PRIVATE IAUI,

INTERLEAVING IAUI.

!"#$%&

!"#$%'

!"#$%(

!"#$ %"#&'

)$*"#%+%()*+,)--).$/'")0

,$*-%+%()*+,)--).$/'")0

!"#$ %"#&'

)$*"#%+%()*+,)--).$/'")0

,$*-%+%()*+,)--).$/'")0

!"#$ %"#&'

)$*"#%(*+,)--)*&'"120

,$*-%(*+,)--)*&'"120

!"#

(a) (b)
Figure 12: (a) SM model for Mutually exclusive IAUI; (b) RingMenu [7].

Active

Idle

No op. Sliding

[slider. owner is set]/

[else]/

slider.owner := uid

Motion

& [uid == self.uid]/

Press &

[uid == owner] /

Release &

[uid == owner] /

Active

Idle

No op. Sliding

[slider. owner is set]/

[else]/

slider.owner := uid

Motion

& [uid == self.uid]/

Press &

[uid == owner] /

Release &

[uid == owner] /

Active

Idle

No op. Sliding

[else]/
[slider. owner not set]/

slider.owner := uid

Motion

[uid == owner] /

Press

[uid == owner] /

Release

[uid == owner] /

/ unset
slider.owner

DISCUSSION

IOWA models

As a first evaluation, we instantiated the IOWAState

models to develop eight very different IAUI components.

As a second evaluation, we used our models as a

framework to analyze existing implementations and to

identify recurring patterns. Of course, a long-term

evaluation would be clearly appropriate for a good

understanding of the strengths and weaknesses of our

models. In particular, we currently use our models to

implement a serious game, based on a DiamoundTouch

device, for the learning of cooperative practices for

engineering tasks.

As the IOWA models are based on HSMs to specify the

behavior of IAUIs, our approach is similar to SwingState

[2], StateStream [11] or HsmTk [5] models and

implementations. Although these works target single-user

interfaces, our models are designed to support IA user

interfaces. In particular, an IOWA component supports

simultaneous user inputs and an ownership mechanism in

order to allow the development of Private and Temporarily

private IAUIs. In addition, our models are designed to

support the parallel execution of HSMs within a MVC-like

architecture in order to allow the development of

Interleaving and Mutually exclusive IAUIs. The IOWA

architecture model is designed to allow compositions of

state machines. However this point is out of the scope of

this article.

Compared to existing IA toolkits [15,23,28,32,33] widely

based on a callback-based programming model inherited

from traditional GUI toolkits, since our models are based on

HSMs to specify the behavior of IAUIs, our several

developments show it can be easily translated into code in

order to produce code easier to read and to maintain,

avoiding the use of a specialized and additional language.

Furthermore, as we adopted an object-oriented

programming approach for the implementation of the

IOWAState models, we observed that the inheritance

mechanism facilitates the reuse of existing HSMs. It also

facilitates the creation of new behaviors with minor

modifications of existing HSMs. It seems an interesting

property to investigate further in order to address state

explosion.

Currently, as explained previously, a first limit of our

approach is the lack of long-term evaluation. Particularly,

we consider another long-term evaluation with Master

students following computer engineering courses, asked to

implement IAUIs based on our models. Focusing only on

IAUI’s behavior constitutes another limit. Investigating

how our models are extensible to support user-

differentiation at presentation level must be considered

further. Finally, we do not address the combination of two

IAUI components, in particular two IAUI components

having conflictual behaviors.

Design patterns

In terms of evaluation, according to [7], a pattern follows a

lifecycle model composed of several steps. Currently, our

patterns have reached step #5 "Pattern Gestalt" for which

readers review the patterns. This article contributes to this

step. The next step must be “Popular acceptance”.

Contributing to the evaluation as well as demonstrating the

completeness of our patterns, our pattern classification

covers the classification of the IDWidgets framework [26]

related to behavior, and coherently integrates cooperative

gestures [18]. In addition, we go one step further towards

software implementation of IAUIs as we provide and detail

seven design patterns. Furthermore, although CSCW

literature considers UI elements’ ownership as private or

public, we identify a new and intermediate situation of

ownership: temporary ownership.

Complementary to the conceptual IDWidgets framework

[26] providing classes of IAUI widgets, our pattern

classification is at implementation level and identifies

classes of identity-aware user interactions.

Except the fact that our patterns should reach step “Popular

acceptance” (step #7), an unanswered issue is the

completeness of our design patterns and the related

classification. Particularly, our patterns focus on behavior

only and patterns for user-differentiated presentations

should be investigated further.

CONCLUSION

Focusing on the design and development of Identity-Aware

User Interfaces, this article presents two main findings.

First, the IOWAState models revisit the MVC architecture

model to rely on hierarchical state machines in order to

support identity awareness, simultaneous user inputs, and to

help developers to produce code easier to read and to

maintain. Another significant contribution is a classification

of IAUIs based on a set of seven design patterns to specify

the behavior of IAUIs using state machines.

As a perspective, we need to investigate rules to combine

several IAUI components. Indeed, combining two IAUI

components may lead to the combination of conflictual

HSMs such as a Private IAUI component embedding a

Public IAUI component. In terms of implementation, we

need to investigate alternative programming languages to

Python to demonstrate the generative power of the

IOWAState models. Finally, we plan to extend our patterns

and the state machine approach to single-user multi-touch

user interfaces.

ACKNOWLEDGMENTS

To Renaud Blanch for advice and hints he gave about

HSMs and the permission to use his HSM-based SWIT

toolkit.

REFERENCES

1. Annett, M., Grossman, T., Wigdor, D., and Fitzmaurice,

G. Medusa: a proximity-aware multi-touch tabletop. In

Proc. of UIST 2011, ACM Press (2011), 337–346.

2. Appert, C., and Beaudouin-Lafon, M. SwingStates:

adding state machines to the Swing toolkit. In Proc. of

UIST 2006, ACM Press (2006), 319–322.

3. Bérard, F., and Laurillau, Y. Single User Multitouch on

the DiamondTouch: From 2x1D to 2D. In Proc of ITS

2009, ACM Press (2009), 1–8. http://gil.imag.fr

4. Bier, E., and Freeman, S. MMM: A User Interface

Architecture for Shared Editors on a Single Screen. In

Proc. of UIST 1991, ACM Press (1991), 79–86.

5. Blanch, R., and Beaudouin-Lafon, M. Programming rich

interactions using the hierarchical state machine toolkit.

In Proc. of AVI 2006, ACM Press (2006), 51–58.

6. Borchers, J. A pattern approach to interaction design. In

Proc of DIS 2000, ACM Press (2000), 369–378.

7. Brown, W., Malveau, R., McCormick, H., Mowbray, T.,

and Thomas, S.W. The Software Patterns Criteria

(1998), http://www.antipatterns.com/whatisapattern/

8. Chaboissier, J., Isenberg, P., and Vernier, F.

RealTimeChess: lessons from a participatory design

process for a collaborative multi-touch, multi-user

game. In Proc. of ITS 2011, ACM Press (2011), 97–106.

9. Dietz, P., and Leigh, D. DiamondTouch: A multi-user

touch technology. In Proc. of UIST 2001, ACM Press

(2001), 219–226.

10. Druin, A., Stewart, J., Proft, D., Bederson, B., and

Hollan, J. KidPad: a design collaboration between

children, technologists, and educators. In Proc. of CHI

1997, ACM Press (1997), 463–470.

11. de Haan, G., and Post, F. StateStream: a developer-

centric approach towards unifying interaction models

and architecture. In Proc of EICS 2009, ACM Press

(2009), 13–22.

12. Han, J. Y. Low-cost multi-touch sensing through

frustrated total internal reflection. In Proc of UIST 2005,

ACM Press (2005), 115–118.

13. Hourcade, H.P., and Bederson, B. Architecture and

implementation of a java package for multiple input

devices (MID). Univ. of Maryland Human–Computer

Interaction Lab. (HCIL). Tech. report no. 99–08 (1999).

14. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M.

Proton: multitouch gestures as regular expressions. In

Proc. of CHI 2012, ACM Press (2012), 2885–2894.

15. Letondal, C., Chatty, S., Phillips, G., André, F., and

Conversy, S. Usability requirements for interaction-

oriented development tools. Psychology of

Programming, Maria P. D. Pérez and M.B. Rosson

(2010), 12–26.

16. Marquardt, N., Kiemer, J., Ledo, D., Boring, S., and

Greenberg, S. Designing user-, hand-, and handpart-

aware tabletop interactions with the TouchID toolkit. In

Proc. of ITS 2011, ACM Press (2011), 21–30.

17. Microsoft Surface, www.microsoft.com/surface/

18. Morris, M.R., Huang, A., Paepcke, A., and Winograd,

T. Cooperative gestures: multi-user gestural interactions

for co-located groupware. In Proc. of CHI 2006, ACM

Press (2006), 1201–1210.

19. Morris, M.R. TeamTag: exploring centralized versus

replicated controls for co-located tabletop Groupware.

In Proc. of CHI 2006, ACM Press (2006), 1273-1282.

20. Morris, M. R. Designing Tabletop Groupware. In

Adjunct Proc. of UIST 2005, ACM Press (2005).

21. Myers, B.A. Separating application code from toolkits:

eliminating the spaghetti of callbacks. In Proc. of UIST

1991, ACM Press (1991), 211–220.

22. Myers, BA, Stiel, H., and Gargiulo, R. Collaboration

using multiple PDAs connected to a PC. In Proc of

CSCW 1998, ACM Press (1998), 285–294.

23. Newman, W.M. A system for interactive graphical

programming. In Proc. of AFIPS 1968, ACM Press

(1968), 47–54.

24. Partridge, G.A., and Irani, P.P. IdenTTop: a flexible

platform for exploring identity-enabled surfaces. In Ext.

Abstr. of CHI 2009, ACM Press (2009), 4411–4416.

25. Piper, A.M., O'Brien, E., Morris, M.R. and Winograd,

T. SIDES: A cooperative tabletop computer game for

social skills development. In Proc. of CSCW 2006,

ACM Press (2006), 1–10.

26. Ryall, K., Esenther, A., Forlines, C., Shen, C., Shipman,

S., Morris, M.R., Everitt, K., and Vernier, F. Identity-

differentiating widgets for multiuser interactive

surfaces. IEEE Comput. Graph. 26, 5 (2006), 56–64.

27. Schmidt, D., Chong, M.K., and Gellersen, H. IdLenses:

dynamic personal areas on shared surfaces. In Proc. of

ITS 2010, ACM Press (2010), 131–134.

28. Shen, C., Vernier, F., Forlines, C., and Morris, M.R.

DiamondSpin: an extensible toolkit for around-the-table

interaction. In Proc. of CHI 2004, ACM Press (2004),

167–174.

29. Stewart, J., Bederson, B., and Druin, A. Single display

groupware: a model for co-present collaboration. In

Proc. of CHI 1999, ACM Press (1999), 286–293.

30. Tse, E., Greenberg, S., Shen, C., Forlines, C., and

Kodama, R. Exploring true multi-user multimodal

interaction over a digital table. In Proc. of DIS 2008,

ACM Press (2008), 109–118.

31. Tse, E., and Greenberg, S. Rapidly prototyping Single

Display Groupware through the SDGToolkit. In Proc. of

AUIC 2004, Australian Computer Society (2004), 101–

110.

32. Tuddenham, P., and Robinson, P. T3: A toolkit for high-

resolution tabletop interfaces. In Ext. Abstr. of CSCW

2006, ACM Press (2006), 2237–2242.

33. Wellner, P. Statemaster: A UIMS based on statechart for

prototyping and target implementation. In Proc. of CHI

1989, ACM Press (1989), 177–182.

