Inferring Mealy Machines

Muzammil Shahbaz Roland Groz 1
LIG - Laboratoire d'Informatique de Grenoble
Abstract : Automata learning techniques are getting significant importance for their applications in a wide variety of software engineering problems, especially in the analysis and testing of complex systems. In recent studies, a previous learning approach [1] has been extended to synthesize Mealy machine models which are specifically tailored for I/O based systems. In this paper, we discuss the inference of Mealy machines and propose improvements that reduces the worst-time learning complexity of the existing algorithm. The gain over the complexity of the proposed algorithm has also been confirmed by experimentation on a large set of finite state machines.
Type de document :
Communication dans un congrès
Formal Methods 2009, 2009, Eindhoven, Netherland, pp.207-222, 2009, 〈10.1007/978-3-642-05089-3_14〉
Liste complète des métadonnées
Contributeur : Catherine Oriat <>
Soumis le : vendredi 28 février 2014 - 13:54:23
Dernière modification le : jeudi 11 octobre 2018 - 08:48:04




Muzammil Shahbaz, Roland Groz. Inferring Mealy Machines. Formal Methods 2009, 2009, Eindhoven, Netherland, pp.207-222, 2009, 〈10.1007/978-3-642-05089-3_14〉. 〈hal-00953587〉



Consultations de la notice