Can we use perfect simulation for non-monotonic Markovian systems ?

Vandy Berten 1 Ana Busic 2 Bruno Gaujal 2 Jean-Marc Vincent 2
2 MESCAL - Middleware efficiently scalable
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : Simulation approaches are alternative methods to estimate the stationary be- havior of stochastic systems by providing samples distributed according to the stationary distribution, even when it is impossible to compute this distribution numerically. Propp and Wilson used a backward coupling to derive a simu- lation algorithm providing perfect sampling (i.e. which distribution is exactly stationary) of the state of discrete time finite Markov chains. Here, we adapt their algorithm by showing that, under mild assumptions, backward coupling can be used over two simulation trajectories only.
Type de document :
Communication dans un congrès
ROADEF, 2008, Clermont-Ferrand, 2008
Liste complète des métadonnées


https://hal.inria.fr/hal-00953636
Contributeur : Arnaud Legrand <>
Soumis le : mardi 25 mars 2014 - 10:26:12
Dernière modification le : mercredi 7 octobre 2015 - 01:16:28
Document(s) archivé(s) le : mercredi 25 juin 2014 - 10:45:01

Fichier

Roadef-2008.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00953636, version 1

Collections

INRIA | LIG | UGA

Citation

Vandy Berten, Ana Busic, Bruno Gaujal, Jean-Marc Vincent. Can we use perfect simulation for non-monotonic Markovian systems ?. ROADEF, 2008, Clermont-Ferrand, 2008. <hal-00953636>

Partager

Métriques

Consultations de
la notice

435

Téléchargements du document

95