Model Fusion in Conceptual Language Modeling

Loic Maisonnasse 1, 2 Eric Gaussier 3 Jean-Pierre Chevallet 2
1 DRIM - Distribution, Recherche d'Information et Mobilité
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
3 MRIM - Modélisation et Recherche d’Information Multimédia [Grenoble]
LIG - Laboratoire d'Informatique de Grenoble, Inria - Institut National de Recherche en Informatique et en Automatique
Abstract : We study in this paper the combination of different concept detection methods for conceptual indexing. Conceptual indexing shows effective results when large knowledge bases are available. But concept detection is not always accurate and errors limit the performances of con- ceptual indexing. A solution to solve this problem is to combine different concept detection methods. In information retrieval the language model- ing approach shows good results and can be used for concepts indexing. As this framework is easily adaptable we propose some fusion models that extend the language modeling approach to combine different detec- tion methods. In this paper, we present previous works on conceptual indexing and conceptual language modeling. Then we investigate several ways for combining concept detections, both on queries and on docu- ment models. Our experiments, on a standard medical collection, show that our fusion models improve the usual conceptual language model, up to 17% on mean average precision. These results show that mixing con- ceptual detections is an efficient way to reduce the impact of detection errors.
Type de document :
Communication dans un congrès
31st European Conference on Information Retrieval (ECIR 09), 2009, Toulouse, France. pp.240-251, 2009
Liste complète des métadonnées

https://hal.inria.fr/hal-00953849
Contributeur : Marie-Christine Fauvet <>
Soumis le : vendredi 28 février 2014 - 16:02:23
Dernière modification le : mardi 24 avril 2018 - 13:32:31

Identifiants

  • HAL Id : hal-00953849, version 1

Citation

Loic Maisonnasse, Eric Gaussier, Jean-Pierre Chevallet. Model Fusion in Conceptual Language Modeling. 31st European Conference on Information Retrieval (ECIR 09), 2009, Toulouse, France. pp.240-251, 2009. 〈hal-00953849〉

Partager

Métriques

Consultations de la notice

376