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ABSTRACT

In this paper, we compare active learning strategies for in-

dexing concepts in video shots. Active learning is simulated

using subsets of a fully annotated dataset instead of actually

calling for user intervention. Training is done using the col-

laborative annotation of 39 concepts of the TRECVID 2005

campaign. Performance is measured on the 20 concepts se-

lected for the TRECVID 2006 concept detection task. The

simulation allows exploring the effect of several parame-

ters: the strategy, the annotated fraction of the dataset, the

number of iterations and the relative difficulty of concepts.

Three strategies are compared. The first two respectively se-

lect the most probable and the most uncertain samples. The

third one is a random choice. The “most probable” strategy

is almost always the best one and it permits to get very close

to the maximum performance while requesting the annota-

tion of only one eighth of the whole dataset. The “most un-

certain” strategy is better for moderately difficult concepts

and when a significant part of the dataset is annotated.

1. INTRODUCTION

Image and video databases become more and more com-

mon and large. They are found in a variety of places includ-

ing home, companies and institutions and for a variety of

applications. In order to keep them manageable, powerful

tools are needed for searching and browsing. These tools

need other tools for contents indexing. This indexing can

be done at the signal level (color, texture, motion ...) or at

the semantic level (concepts). From both indexing types,

the latter is by far the most useful for the users but it is also

by far the most difficult one to extract from the contents.

Due to the so called semantic gap between the raw image or

video contents and the elements that makes sense to human

beings, indexing concepts in image or video documents is

a very hard task. This task is most often carried out using

classifiers or networks of classifiers [1, 2].

Supervised learning consists in training a system from sets

of positive and negative examples. The learning system
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may be composed of various types of feature extractors,

classifiers and fusion modules. The systems’ performance

depends a lot on the implementation choices and details

but it also strongly depends upon the size and quality of

the training examples. While it is quite easy and cheap to

get large amounts of raw data, it is usually very costly to

have them annotated because it involves human interven-

tion for the judging of the “ground truth”. In the context of

LSCOM (Large Scale Concept Ontology for Multimedia)

[3], 449 concepts have been annotated on about 69 thou-

sands of samples. If we consider the performance obtained

by the state of the art systems using this annotated data dur-

ing the TRECVID 2006 evaluation campaign (a Mean Av-

erage Precision of only 0.1 to 0.2), even this seems far from

being sufficient.

While the volume of data that can be manually annotated is

limited due to the cost of manual intervention, there remains

the possibility to select the data sample that will be anno-

tated so that their annotation is as useful as possible. De-

ciding which samples will be the more useful is not trivial.

Active learning is an approach in which an existing system

is used to predict the usefulness of new samples. This ap-

proach is a particular case of incremental learning in which

a system is trained several times with a growing set of sam-

ples.

Several strategies or heuristics can be considered to predict

the samples’ usefulness. Most of them operate by selec-

tive sampling which consists in progressively adding to the

training set the samples expected to be the most informative

ones. The most popular ones include:

• When several systems are available, choose the sam-

ples which maximize the disagreement amongst them

(“query by committee” [4]). This strategy cannot be

used if a single system is available or inefficient if the

used systems are too close to each other.

• Choose the most uncertain samples (uncertainty sam-

pling [5]). This strategy tries to increase the sample

density in the neighborhood of the frontier between

positives and negatives and therefore improve the sys-

tem’s precision.



• Choose the most probable positive samples. This strat-

egy tries to maximize the size of the set of positive

samples (the positive samples are most often sparse

within the whole set and finding negative samples is

easy and these generally come as numerous enough

whatever the selection strategy).

• Choose the farthest samples from already evaluated

ones. This strategy tries to maximize the variety of

the evaluated samples and therefore to improve the

system’s recall. It is based on a distance between

sample that has to be appropriately defined and it does

not require the availability of a system (the consid-

ered distance, however, may be related to some sys-

tem outputs).

More complex strategies can be used including combina-

tions of these. For instance, the system may choose the

samples for annotation amongst the most probable ones and

amongst the farthest from the already evaluated ones. An-

other possibility is to select samples by groups in which

maximize the expected global knowledge gain [6].

Quite often, indexing systems classify samples for several

concepts. Many strategies are based on the assumption that

when a sample is selected for annotation, all the concepts

are evaluated by the annotator. This is what was done in the

context of the collaborative annotation effort of TRECVID

2003 [7] where 133 concepts were annotated at once by an

operator for each proposed shot. The resulting annotation

was of poor quality because of the cognitive load applied to

the annotator. For instance, many false negative were ob-

served because the operator was not able to keep in mind all

the concepts to be annotated. Therefore, for the TRECVID

2005 [8] collaborative annotation effort and for the LSCOM

annotations as well [3], the choice was made to give to the

operators a single concept to annotate on a series of pro-

posed shots. From the active learning point of view, the

type of annotation has some implications. The second one

excludes methods that require that each selected sample is

annotated against all concepts. On the other hand, it per-

mits a finer grain application of the various strategies be-

cause sample selection can be done independently for each

concept.

A particular case is the use of active learning within rele-

vance feedback. In this case, there is only one concept con-

sidered and it corresponds to the user’s need. The system

learns it from the growing set of user’s judgments across

feedback cycles. This approach has been successfully used

in content-based image retrieval [9, 10].

In this work we investigate how efficient active learning

strategies are for the indexing of concepts in video shots.

We consider the annotation type used in TRECVID 2005

and LSCOM collaborative annotation efforts: samples are

presented to the annotator for a single concept at once. We

use a single classification system which is one of the variant

that we used for our participation to the “high level feature

extraction” task of TRECVID 2006 [11]. One originality in

the evaluation approach is that we use the full TRECVID

2005 collaborative annotation to simulate the incremental

annotations required by the various active learning strate-

gies. Our assumption is that the annotations made by an

annotator do not depend upon the order in which the anno-

tations are proposed to him or that, if this is the case, this

does not significantly affect our conclusions.

2. SIMULATED ACTIVE LEARNING

Actual experiments for comparing strategies in active learn-

ing are difficult and costly to organize because of the in-

volvement of humans in the process. Active learning meth-

ods are especially developed for contexts in which it is pos-

sible to annotate only a small fraction of a large data set. It

sometimes happens however that large datasets are fully an-

notated even if the corresponding cost if very high. Active

learning is not relevant in these cases since nothing remains

to be annotated but, on the opposite, such large scale full an-

notations constitute opportunities to simulate, evaluate and

compare strategies in active learning without the need to in-

volve again a user. In simulated active learning, methods

are executed as if no annotation is available in the begin-

ning. Then, each time a human annotation is needed, the

corresponding subset of the full annotation is made avail-

able.

The performance of the system during the various stages of

the simulated active learning process will normally not ex-

ceed the performance it achieves using the whole annotated

dataset. What simulated active learning brings is the pos-

sibility to compare the performance that the system would

have reached with the various strategies if only a given frac-

tion of the whole dataset could have been annotated.

From this, it is possible to make predictions on what would

be the better strategy if an even larger dataset becomes avail-

able but only a small fraction of it can be annotated. It is

also possible to make predictions on what would be the bet-

ter strategy for annotating a large number of new concepts

on a small fraction of the existing dataset. A large number

of strategies can be compared under equivalent and repeat-

able conditions.

Large fully annotated datasets have been produced in the

context of TRECVID 2005 [8] and LSCOM [3]. In both

cases, data samples are video shots of the development part

of the TRECVID 2005 video collection. In the TRECVID

2005 collaborative annotation effort, 39 concept labels were

assigned to 36014 shots and in the LSCOM project, 449

concept labels were assigned 61901 shots. This was done in

conditions similar to those of active learning.



In order to evaluate the efficiency of the different strategies,

it is necessary to measure the system performance on a test

dataset which is different from the training dataset. The

TRECVID 2005 and 2006 test datasets with their annota-

tions and performance metrics can be used for this purpose

in conjunction with the above mentioned training data.

3. SYSTEM DESCRIPTION

For the evaluation of active learning strategy, the exact type

of system used has probably a strong influence. It can be

expected that a better the system will globally increase the

efficiency of most strategies. Also, the optimal strategy may

vary with systems’ characteristics. We did not evaluate here

the influence of the classifying system implementation. We

selected one of the variants of the classification system we

used for the TRECVID 2006 concept detection task [11].

This variant has the advantages of having a relatively short

training time and of working independently on the different

concepts. It also has a global performance (when trained

on the whole development set) which is close to the median

performance of the participating systems.

Concept detection is performed using networks of SVM clas-

sifiers arranged in order to take into account a variety of low

level descriptors combining text, local and global visual in-

formation as well as conceptual context. The 20 assessed

concepts of the TRECVID 2006 campaign are derived from

“intermediate” concepts, themselves derived from low level

descriptors and not necessarily related to the target final

concepts. This approach is linked to the idea that it may

be better to bridge the semantic gap in several steps within

which the complexity remains low and the correlation be-

tween the inputs and the outputs is kept high.

3.1. “Visual” intermediate concepts

In the visual modality, intermediate concepts are computed

on image patches. There are 260 (20 × 13) half-overlapping

32 × 32 pixels patches. We have built a set of 15 inter-

mediate concepts (ANIMAL, BUILDING, CAR, CARTOON,

CROWD, FIRE, FLAG-US, GREENERY, MAPS, ROAD, SEA,

SKIN, SKY, SPORTS and STUDIO BACKGROUND), which

have been learned from the collaborative corpus annotation

of TRECVID 2003 and 2005 that we cleaned up and en-

riched (there is no overlap between the TRECVID 2005

concepts used as intermediate concepts for training and those

used as target concepts). We have trained 15 intermediate

concepts with a single classifier that takes as inputs:

• 9 color components (RGB means, variances and co-

variances)

• 24 texture components (8 orientations × 3 scales Ga-

bor transforms)

• 7 motion components (the central velocity compo-

nents plus the mean, variance and co-variance of the

velocity components within the patch; a velocity vec-

tor is computed for every image pixel using an optical

flow tool [12] on the whole image).

The 15 × 260 outputs of those intermediate concepts are

inputs for the higher level classifiers (the 20 classifiers cor-

responding to the TRECVID 2006 assessed concepts). In

practice, not all of the 15 intermediate concepts are used

for all of the 20 concepts but only a subset of them. This

subset is manually chosen for each of the concepts and typ-

ically contains 5 or 6 intermediate concepts. Therefore, we

consider those intermediate concepts as “local” descriptor

which typically contains about 1500 components. The vec-

tor components corresponding to the intermediate concepts

are real values between 0 and 1 corresponding to the esti-

mated probability of the patch of containing the concept as

they are computed by the libsvm package [13].

3.2. Visual global features

The intermediate concepts are completed by low-level vi-

sual features at the global level. The two descriptors are

simply concatenated, as an “early fusion” scheme. The global

low-level image descriptors include:

• 64 color components (4 × 4 × 4 color histogram),

• 24 texture components (8 orientations × 5 scales Ga-

bor transform),

• 5 motion components (the mean, variance and covari-

ance of the velocity components within the image).

Adding global descriptors aim to add context into the

concept detection process. Exploiting local and global de-

scriptors can help to overcome the ambiguity often faced in

concept detection.

3.3. Textual intermediate concepts

We also computed “Textual” intermediate concepts on each

audio segment of the ASR-MT transcription. A list of 2500

terms optimized for each of the 20 concepts is built con-

sidering the most frequent terms and excluding stop words,

which co-occur with a considered concept. The text descrip-

tor is a Boolean vector whose components are 0 or 1 if the

term is absent or present in the audio segment. Again the

vectors built at the level of the audio segments are projected

on the key frames and in the same way.

3.4. Normalized Early Fusion

The number of extracted features depends upon the modal-

ities and the type of the features. Hence, an early fusion



scheme based on simple vector concatenation is much af-

fected by the vector which has the highest number of in-

puts. Such fusion should ha an impact on the classification,

especially with a RBF kernel which is based on Euclidian

distance between each training sample.

In traditional SVM implementation, a normalization pro-

cess is integrated and aims to transform each input in the

same range (e.g. [0..1], [−1..1]) in order to unbiased the Eu-

clidian distance. But, for the scope of merging features, this

normalization does not take into account the number of in-

put from individual features. Hence, we used a normalized

early fusion scheme to avoid the problem of imbalanced fea-

tures input by reprocessing each feature vectors before con-

catenation. We normalized each individual vector so that its

average norm is about the same. The normalization formula

becomes:

xi′ =
xi − mini

(maxi − mini) ×
√

Card(xi)

where xi is an input of the feature vector x, mini and maxi

are respectively the minimum and maximum value of the

ith input among the training samples and Card(xi) is the

number of dimensions of the source vector of xi.

4. EXPERIMENTATIONS

Evaluations were done using the TRECVID 2005 collabo-

rative annotation for training and the TRECVID 2006 con-

cept detection task for testing. In this task, systems are re-

quired to provide, for 20 concepts, a ranked list of the 2000

shots most likely to contain it (amongst 146328 candidate

shots). System performance is measured using the Mean

Average Precision of the system computed on the returned

list (in practice, a variant called Inferred Average Precision

is used). This metric is the one that we use for all our evalua-

tions and for comparing the efficiency of the different strate-

gies.

4.1. Strategies

Three strategies have been evaluated each with three dif-

ferent step sizes. The first strategy is to always select the

most probable positive samples. The second strategy is to

always select the most uncertain samples. The third strategy

in rather an absence of strategy and corresponds to a random

choice, it is used as a baseline for the other two. The sys-

tem always outputs a score for each test sample. This score

is used for ordering the results list and it correspond to the

probability of presence of the target concept in the sample

computed as such by the last SVM stage of the system. In

the “most probable” strategy, samples with the probability

closest to 1.0 are selected. In the “most uncertain” strategy,

samples with the probability closest to 0.5 are selected. The

three strategies are implemented using a step size (fraction

of the whole set that is proposed for annotation to a human)

of 1/6th, 1/20th and 1/40th respectively.

We did not investigate yet the effect of the initial conditions.

We started all experiments with an initial set of ten posi-

tives and twenty negative samples per concept randomly se-

lected in the set of all positive and negative samples. That is:

for the “cold start”, we assume that in actual experiments,

users have at least ten examples of what they are looking for.

We also consider that “negatives come for free” because it

is much easier to find negative samples than positive ones.

For system training, we use twice as many negative samples

as positive samples because this appears to be an optimum

value for the kind of classifier we use. In all our exper-

iments, whatever the strategy, the target concept, the step

size and the step number, we always got at least this ratio in

the annotations we asked for. Since there are always much

more negative samples than necessary, the selected ones are

randomly chosen.

4.2. Global trends

Figure 1 displays the evolution of system MAP (actually In-

ferred Average Precision as measured in TRECVID 2006)

with the number of annotated samples for the three strate-

gies, for all concepts and with the smallest step size (2.5%

of the sample set). We first notice a significant level of

“noise”: the performance has some fluctuations even con-

sidering an average on 20 concepts and large numbers so

annotated samples. The performance is not always increas-

ing with the number of annotations. The fluctuations are

probably due to the fact that added concepts, though posi-

tives, are not always very representative. We also noticed

that they depend upon the random choice of negative sam-

ples and upon the initial choice of the positive samples for

the cold start (not shown). This is the case even at the last

iteration when all positive samples are taken into account

because the negative samples have been selected in a differ-

ent way. General trends can be observed anyway by making

abstraction of the fluctuations:

• The “most probable” strategy is the best one and it

gets very close to the best performance with the an-

notation of only about 12.5% of the whole sample set.

• The “most uncertain” strategy does still much better

than the “random” one but worse than the “most prob-

able” one. This is a bit surprising because this strat-

egy is the preferred one in many approaches. This

strategy gets close to the best performance with the

annotation of about 25% of the whole sample set. The

performance increases then very slowly.

• The “random” strategy shows a continuous increase

in performance with the size of the sample set with
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Fig. 1. Evolution of system MAP with the number of annotated samples for the three strategies, all concepts

a higher rate near the beginning. The maximum per-

formance is not reached even with the annotation of

50% of the sample set.

4.3. Relation with concept difficulty

Figures 2, 3 and 4 display the same information for easy,

moderately difficult and difficult concepts respectively.

Easy concepts are: WEATHER (0.4539), SPORT (0.3006),

MAPS (0.2171), MILITARY (0.0985) and CAR (0.0771).

Moderate concepts are: WATERSCAPE-WATERFRONT

(0.0755), CHARTS (0.0708), MEETING (0.0671), FLAG-

US (0.0634), TRUCK (0.0355), MOUNTAIN (0.0329) and

PEOPLE-MARCHING (0.0284). Difficult concepts are:

DESERT (0.0557), EXPLOSION-FIRE (0.0548), COMPU-

TER-TV-SCREEN (0.0411), POLICE-SECURITY (0.0257),

AIRPLANE (0.0206), ANIMAL (0.0058), OFFICE (0.0027)

and CORPORATE-LEADER (0.0000). The number between

parentheses is the MAP for this concept when the system is

trained on the whole dataset.

The general trend is conserved for each group of concepts

even if the MAP absolute values are on different scales.

There are more fluctuations in the results for difficult con-

cepts. These are also less frequent and each new positive

sample added has a significant impact which may be neg-

ative if the sample, though positive, is not very representa-

tive.

For moderately difficult concepts, it seems that the “most

uncertain” strategy is better than “most probable” one when

the number of annotated samples exceeds 20% of the sam-

ple set. This suggests that a hybrid strategy like “most prob-

able first then most uncertain” could do even better. For dif-

ficult concepts, it seems that the “most uncertain” strategy

is better than “most probable” one when the number of an-

notated samples is below 20% of the sample set though this

might be due to fluctuations.

It seems also that the random strategy does better than the

other two for difficult concepts near the end of the sample

set and that might not be due to fluctuations. Again, this is

probably due to the difference in the selection of negative

concepts: for difficult concepts, it may be better to choose

samples that are within the less probable ones. That may be

due to their sparseness and high variability.

4.4. Finding of positive and negative samples

Figure 5 displays the evolution of the number of positive

samples found with the number of annotated samples for

the three strategies, for all concepts and with the smallest

step size. As expected, the “random” strategy finds positive

samples in a quasi-linear way; the “most uncertain” strat-

egy finds them faster and the “most probable” strategy even

faster. The finding rates relatively to random near the be-

ginning are of about 2.5:1 and 4:1 for “most uncertain” and

“most probable” strategies respectively. These ratios proba-

bly depend significantly of the system performance but the

relative performance of the strategies is clear either from the

number of positive samples found or from the Mean Aver-

age Precision and we expect it to be representative.

We notice a strange behavior for the “most uncertain” curve

near the end of the experiment: the number of positive is

lower than expected and then it strongly increases. This is

probably due to a small implementation mistake: instead of

selecting samples with scores as close as possible to 0.5, the

program selected samples with decreasing scores starting

from 0.5 and then, if no more were available with increasing

scores starting from 0.5. This makes little difference in the

first few iterations (at least up to the middle of the sample

set) since there are always lots of samples with scores just

before and just after 0.5 but, near the end, it tends to favor
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Fig. 2. Evolution of system MAP with the number of annotated samples for the three strategies, easy concepts
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Fig. 5. Evolution of the number of positive samples with the number of annotated samples for the three strategies

the selection of negative samples until they are exhausted,

the last positive samples being then included. We are cur-

rently running again the “most uncertain” strategy with the

right selection criterion (scores as close as possible to 0.5)

and the corresponding results will be included in the final

version of the paper. We already observed that this has very

little influence on the first half of the curves where most of

the interesting observations are to be made (active learning

strategies are of interest when only a fraction of the training

set can be annotated).

The negative samples selected by the “most probable” strat-

egy are more useful than those selected by the “most uncer-

tain” strategy because they look more like positive samples.

Negative samples that are far from the positive ones are usu-

ally not considered by the SVM classifiers and do not help.

Therefore, the “most probable” strategy does not only select

more positive samples, it also selects more helpful negative

samples.

4.5. Effect of the step size

We tried the three strategies with three step sizes corre-

sponding to 1/6th, 1/20th and 1/40th of the dataset size.

We presented the previous results with the smallest step size

since it is the most realistic. Figure 6 shows the evolution of

system MAP with the number of annotated samples on the

first half of the dataset for the “most probable” strategy for

the three step size and for all concepts. As expected, smaller

step sizes leads to a faster and stronger active learning ef-

fect. Similar results are obtained with the “most uncertain”

and random strategies (not shown).

The effect of the step size seems to be larger within the first

few iterations. Also, the training associated to the last it-

erations becomes longer and longer due to the increasing

number of positive and negative samples. This suggests that

an increasing step size strategy would optimize the gain rel-

atively to both the number of annotation available and the

cumulated training time.

5. CONCLUSION

We have compared active learning strategies for indexing

concepts in video shots. Active learning was simulated us-

ing subsets of a fully annotated dataset instead of actually

calling for user intervention. Training was done using the

collaborative annotation of 39 concepts of the TRECVID

2005 campaign. Performance was measured on the 20 con-

cepts selected for the TRECVID 2006 concept detection

task. The simulation allowed exploring the effect of sev-

eral parameters: the strategy, the annotated fraction of the

dataset, the number of iterations and the relative difficulty

of concepts.

Three strategies were compared. The first two respectively

select the most probable and the most uncertain samples.

The third one is a random choice. The “most probable”

strategy is almost always the best one and it permits to get

very close to the maximum performance while requesting

the annotation of only one eighth of the whole dataset. The

optimal strategy depends upon the difficulty of the target

concepts and the fraction of the dataset which is annotated.

For instance, the “most uncertain” strategy is better for mod-

erately difficult concepts and when a significant part of the

dataset is annotated.

Current annotated corpora, TRECVID 2003 and 2005, and

LSCOM, constitute very good resources but they are still in-

sufficient for efficient system training. Their exhaustive an-

notation has been very useful for the current study and for

the design and evaluation of many concept indexing sys-

tems. These annotated corpora will have to be further en-

riched and active learning techniques should be considered
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in order to get as much useful information as possible from

every paid annotation. These corpora can themselves be

used for the cold start and the set of already developed sys-

tems could be used in a collaborative way for the implemen-

tation of the most efficient active learning strategies.

Future work will be conducted to better characterize the

optimal strategy. Other strategies can be investigated like

“query by committee” if several system are accessible. A

selection of negative samples based on a maximum variabil-

ity could be considered instead of a random selection. Com-

bination of several strategies should also be investigated.
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