TRECVID 2007 Collaborative Annotation using Active Learning

Stéphane Ayache 1 Georges Quénot 2
2 MRIM - Modélisation et Recherche d’Information Multimédia [Grenoble]
LIG - Laboratoire d'Informatique de Grenoble, Inria - Institut National de Recherche en Informatique et en Automatique
Abstract : Concept indexing in multimedia libraries is very useful for users searching and browsing but it is a very challenging research problem as well. Beyond the systems' implementations issues, semantic indexing is strongly dependant upon the size and quality of the training examples. In this paper, we describe the collaborative annotation system used to annotate the High Level Features (HLF) in the development set of TRECVID 2007. This system is web-based and takes advantage of Active Learning approach. We show that Active Learning allows simultaneously getting the most useful information form the partial annotation and significantly reducing the annotation effort per participant relatively to previous collaborative annotations.
Type de document :
Communication dans un congrès
TRECVID Workshop, 2007, Gaithersburg, MD, United States. 2007
Liste complète des métadonnées

https://hal.inria.fr/hal-00953889
Contributeur : Marie-Christine Fauvet <>
Soumis le : vendredi 28 février 2014 - 16:03:17
Dernière modification le : mardi 24 avril 2018 - 13:29:34

Identifiants

  • HAL Id : hal-00953889, version 1

Citation

Stéphane Ayache, Georges Quénot. TRECVID 2007 Collaborative Annotation using Active Learning. TRECVID Workshop, 2007, Gaithersburg, MD, United States. 2007. 〈hal-00953889〉

Partager

Métriques

Consultations de la notice

221