Nonequispaced hyperbolic cross fast Fourier transform

Abstract : A straightforward discretization of problems in d spatial dimensions often leads to an exponential growth in the number of degrees of freedom. Thus, even efficient algorithms like the fast Fourier transform (FFT) have high computational costs. Hyperbolic cross approximations allow for a severe decrease in the number of used Fourier coefficients to represent functions with bounded mixed derivatives. We propose a nonequispaced hyperbolic cross FFT based on one hyperbolic cross FFT and a dedicated interpolation by splines on sparse grids. Analogously to the nonequispaced FFT for trigonometric polynomials with Fourier coefficients supported on the full grid, this allows for the efficient evaluation of trigonometric polynomials with Fourier coefficients supported on the hyperbolic cross at arbitrary spatial sampling nodes.
Type de document :
Article dans une revue
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2010, 47 (6), pp.4415-4428. 〈10.1137/090754947〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00954249
Contributeur : Michael Döhler <>
Soumis le : vendredi 28 février 2014 - 17:43:32
Dernière modification le : lundi 21 mars 2016 - 11:28:57

Identifiants

Collections

Citation

Michael Döhler, Stefan Kunis, Daniel Potts. Nonequispaced hyperbolic cross fast Fourier transform. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2010, 47 (6), pp.4415-4428. 〈10.1137/090754947〉. 〈hal-00954249〉

Partager

Métriques

Consultations de la notice

43