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Abstract—In this paper, we consider how to maximize users’
influence in Online Social Networks (OSNs) by exploiting social
relationships only. Our first contribution is to extend to OSNs
the model of Kempe et al. [1] on the propagation of information
in a social network and to show that a greedy algorithm is
a good approximation of the optimal algorithm that is NP-
hard. However, the greedy algorithm requires global knowledge,
which is hardly practical. Our second contribution is to show
on simulations on the full Twitter social graph that simple and
practical strategies perform close to the greedy algorithm.

I. INTRODUCTION

The first motivation of any social network is to foster in-
formation propagation using social relationships among users.
Therefore, it is important to understand how a user can reach
a large population, that is how to best exploit users’ influence.

Domingos et al. [2] introduced first the general problem
to select individuals to spread information taking into account
their influence. Then Kempe et al. [1], [3] defined a general
optimization frameworkto solve this problem. However, the
main implicit assumption made by Kempe et al. is that once
the influential individuals have been identified, they can be
recruited in order to spread the information of interest. For
instance, recruitment can be made with a monetary transaction.
Kempe et al. make two main assumptions for the recruitment
process: the recruitment budget is limited, and when users are
recruited, they cannot refuse (so the recruitment decision is the
one of the user who wants to spread information). However,
the recruitment process in Online Social Networks (OSNs) is
much different, because it is made using friend requests. Such
a recruitment has three main specificities that are not covered
by the model of Kempe et al.: i) there is no guarantee that the
friend request will be accepted; ii) a friend request is cheap and
does not require monetary transaction, so dynamic strategies
are possible; iii) the metric to quantify influence in OSNs,
unlike the one used by Kempe et al., is not only the number
of users that relay the information, but also the number of users
that receive the information. Cha et al. [4] give a more general
discussion about possible metrics of influence in Twitter.

In this paper, we make the following contributions.

i) We extend the model of Kempe et al. with the three
specificities of OSNs and show that the initial result of Kempe
et al. still holds, that is the greedy algorithm is a (1 − 1/e)
approximation of the optimal algorithm that is NP-hard.

ii) Using the complete social graph of Twitter crawled in
July 2012 [5] and consisting of 505 million nodes and 23 bil-
lion edges, we show that, if only the degree and reciprocation
probability of each node i (respectively di and ri) are known
and retweet probabilities are homogeneous, the simple strategy

to select the nodes with the largest product ridi performs
at most 2.5% worse than the greedy algorithm. Moreover,
selecting users at random achieves similar performance when
the replication probability of the cascade process is as large
as 1% and only requires to know the users IDs. Some similar
results were observed by Chen et al. [6] and Habiba et al. [7],
but on much smaller graphs.

II. PROBLEM FORMULATION AND ANALYSIS

In this section, we start by summarizing the contribution
of Kempe et al. on which we are building [1], [3], then we
present our extension of the Kempe’s model.

A. Kempe’s Model

Kempe et al. modeled the propagation of information in a
social network using two different discrete-time models. The
first one is the order independent cascade model. Nodes with
or without the information are respectively called active or
inactive. When one node u becomes active at time t, it has
one chance to influence (infect) all its non-active neighbors,
who may then become active at time t+1. From time t+1 on,
node u is still active but no more contagious. The contagion
attempts from new active nodes at t+1 are arbitrarily ordered.
The probability of success needs to be specified in order to
completely describe the model. A quite general case is when
u’s success probability to infect v depends on the set S of v’s
neighbors that already attempted to influence v. We denote
such probability pv(u, S). In a decreasing cascade model this
probability is non-increasing in S, that is pv(u, S) ≥ pv(u, T )
whenever S ⊆ T . This corresponds to the fact that the more
nodes have already tried in vain to infect v, the less likely v is
to be influenced by other attempts. Starting from an initial set
of active nodes A, the process will stop in at most n−1 steps.
The main performance metric of interest is the final set φ(A) of

active nodes or better its expected size E [|φ(A)|] , σ(A). The
second model is the general threshold model. In this case, each
node has a monotone activation function fv : 2V → [0, 1] and
a threshold θv chosen independently and uniformly at random
from the interval (0, 1]. A node v becomes active at time t+1
if fv(S) ≥ θv , where S is the set of active nodes at time t.
Interestingly, Kempe et al. [3] show that the two models are
equivalent, in the sense that for any activation functions fv(.),
there exist corresponding activation success probabilities pv(.)
such that the probability distribution over the final active sets
ϕ(A) is the same under both models.

The optimization problem introduced by Kempe et al. [1]
is to choose the initial set A under the constraint that |A| ≤ K
so that the expected size of the active nodes’ final set is
maximized. They show that the problem is NP-hard, but that



a natural greedy heuristic reaches a (1 − 1/e) approxima-
tion factor for the decreasing cascade model (and for the
corresponding general threshold model). The greedy heuristic
simply incrementally increases the set A starting from an
empty set and adding at each time the node vi that maximizes
the marginal gain σ(A ∪ {v}) − σ(A). If at each step the
selected node is a 1−ǫ approximation of the best node, then the
greedy algorithm achieves a (1−1/e−ǫ′) approximation factor,
where ǫ′ depends on ǫ polynomially. The key for proving
this result is to show that σ(A) is a non-negative, monotone,
submodular function on sets1, then the conclusion about greedy
algorithm’s approximation ratio follows from known results on
such functions [8], [9].

B. Extension of Kempe’s Model to OSNs

In the following, we extend the model of Kempe et al. to
the specificities of OSNs, and, for the sake of simplicity, we
refer to Twitter in our description of the problems. Twitter is
one of the largest social networks, but it differs from other
social networks, such as Facebook, because it uses exclusively
directed edges (arcs) among accounts. Twitter has no notion
of bidirectional friendship, but it allows users to follow other
users, i.e., to subscribe for their messages. Following does not
require any approval from the user being followed. If Alice
follows Bob, then Alice is called a follower of Bob and Bob a
following of Alice. Twitter users can retweet received tweets,
that is forwarding the tweets to their followers. In this paper,
we use the notation (V,E) to refer to the Twitter social graph,
where V is the set of Twitter users and E is the set of directed
edges. We orient the arcs in such a way that they show the
tweet propagation direction, e.g., if A follows B, the arc is
directed from B to A, because A receives tweets from B.

Kempe et al. for their influence maximization problem
made the implicit assumption that once the influential indi-
viduals have been identified, they can be recruited in order to
spread the information of interest. Recruitment is costly (in
terms of money or social investment), so the available budget
limits the number of individuals to be selected to K .

The recruitment process in OSNs is different from the one
described by Kempe. Indeed, a user v is recruited by u when
v receives information from u, i.e., in Twitter terminology, v
follows u. This recruitment process in OSNs leads to three
specificities. First, even if the user follows the most influential
individuals, there is no guarantee that they will follow him
back (that is, be recruited), we call this specificity the follow
back problem. Second, following is a quite cheap operation
in OSNs so that more aggressive dynamic strategies are
feasible, we call this specificity the dynamic problem. Third,
we quantify the influence not only by the number of individuals
who actively replicate the information but also who can see the
information because they follow the original tweeter or one of
the retweeters, we call this specificity the reader problem. In
the following, we extend the model of Kempe et al. to tackle
these three specificities.

a) Follow back problem: We define the influence of a
user u as the expected number of users who retweet u’s tweets.

1A set function f(.) is submodular if f(S ∪{z})− f(S) ≥ f(T ∪{z}−
f(T ) whenever S ⊆ T and it is monotone if f(S ∪ {z}) ≥ f(S) for each
S and z.

We stress that, in our model, a user can be retweeted only if
some other users follow him and decide to retweet his tweets.
In the following, we show how we can extend Kempe’s model
to this scenario.

Let a node be active if it has read the tweet and decided to
retweet it. Then the original influence maximization problem
can be rephrased as follows: how to choose K nodes that
should initially tweet the message in order to maximize the
expected number of retweets. In this case, pv(u, S) is the
probability that node v reads and decides to retweet the
message tweeted or retweeted from u, given that the nodes
in S have already tweeted or retweeted it.

In the original problem formulated by Kempe et al., it is not
specified how the K initial users should be infected, i.e., in our
language, how they should be convinced to tweet the message.
In this paper, we focus on a specific user u0 that is trying to
maximize his influence and cannot reach other Twitter users
through some external communication network. Then, u0 can
only carefully select a given set of users to follow and hope
that these users will follow u0 back and will eventually retweet
u0’s tweets. The strategic choice of u0 is then the selection of
his set of followings in order to maximize his influence. We
consider for the moment that u0 makes this choice once and
for all at his registration. We observe that Twitter puts a cap to
the maximum number of initial followings that is K = 2000
(this limit increases linearly with the number of followers).
More formally, let B denote the set of u0’s followings and
let ϕ(B) be the set of nodes that retweet a tweet originally
emitted from u0. We can write ϕ(B) =

∑

v∈V Xv, where Xv

is a Bernoulli random variable, that is equal to 1 iff node v is
active at the end of the cascade. Our problem can be formally
stated as follows:

Argmax
B

E [|ϕ(B)|]

subject to |B| ≤ K.
(1)

In the same spirit of Kempe et al. [1], [3] we assume to know
1) the probability ru that a given user u reciprocates u0 if u0
follows u and 2) the probability pv(u, S) that node v reads
and retweets the message tweeted or retweeted by u, given
that the nodes in S have already tweeted or retweeted it. The
knowledge of pv(u, S) is also required for u = u0 or u0 ∈ S.

The greedy algorithm for the follow back problem (1)
corresponds to the following behavior: user u0 selects K
followings one after the other, maximizing at each step the
marginal increment of the function E [|ϕ(.)|]. Our first theo-
retical result is the following.

Proposition 1. The greedy algorithm is a (1− 1/e) approxi-
mation algorithm for follow back problem (1).

Proof: Let (V,E) be the social network’s graph without

node u0. Consider a new graph (V̂ , Ê), where for each node
u in V we add a new node u′ and a link oriented from u′

to u. Let V ′ be the set of these newly added nodes and h :
V → V ′ the function such that h(u) = u′. On this graph
we define success probability functions as follows: p̂v(t, S) =
pv(t, S) for t 6= v′ and v′ /∈ S, p̂v(v

′, S) = rvpv(u0, S) and
p̂v(t, S) = rvpv(t, (S ∪ {u0}) − {v′}) if v′ = h(v) ∈ S.
Fig. 1 (a) illustrates the graph transformation when rv = r
and pv(u, S) = p. We consider now the order independent
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Fig. 1. Graph transformations. The original nodes are green. The added
nodes are red/blue, added arcs are dashed. We have specified the new success
probability functions for the simple case when pv(.) and rv are constant and
respectively equal to p and r.

cascade model on the graph (V̂ , Ê). u0’s choice of the set
of his followings B ⊆ V corresponds to the choice of the
set A = h(B) of initial active nodes in V ′. Moreover, the
probabilities have been defined in such a way that it is possible
to couple the two processes so that φ(h(B)) = ϕ(B) + K ,
where adding K corresponds to the fact that the initial set of
active nodes is counted by φ(.) (A ⊆ φ(A)). It follows that
σ(h(B)) = E [ϕ(B)]+K and the problem (1) is equivalent to

solve the influence maximization problem on (V̂ , Ê) with the
additional constraint that the nodes can only be selected in V ′.
This does not change the property of the function σ(.), that
is non negative, monotone, and sub-modular, then the results
in [1], [3] still hold. In particular the greedy algorithm is a (1−
1/e) approximation algorithm for the influence maximization

problem defined on (V̂ , Ê) and then for the problem (1). 2

b) Dynamic problem: We now consider a variation of
the follow back problem (1) where node u0 is not required to
select all the K followings at once, but u0 can apply more
complex dynamic strategies. For example, node u0 can stop
following nodes that do not reciprocate by a given time T and
start following new users. In this way, u0 can follow during a
given time window more than K users (but at most K at the
same time) and reach in general a larger number of followers
(the number can approach K if there are at least K nodes in
the network willing to reciprocate u0). This improvement in
comparison to the original problem is obtained at the price of
a longer time required to select the best followings. The best
possible result achievable by u0 is obtained if we assume u0 to
know a priori which nodes would reciprocate. For each node
v, let Rv be the Bernoulli random variable indicating if node
v reciprocates node u0 by time T after u0 starts following v.
Clearly it holds rv = E [Rv]. We introduce then the following
ideal optimization problem:

Argmax
B

E [|ϕ(B)|]

subject to |B| ≤ K and Rv = 1 ∀v ∈ B.
(2)

The greedy algorithm for this problem at each step selects
the reciprocating node that maximizes the marginal improve-
ment of ϕ(B).

2Also the results for the case when the greedy algorithm selects at each
step a (1 − ǫ) approximation of the best node can be extended to our case,
but for the sake of conciseness, we only refer to the simpler case.

Proposition 2. The greedy algorithm is a (1− 1/e) approxi-
mation algorithm for the dynamic problem (2).

Proof: The proof is analogous to that of Proposition 1.
In this case an additional node u′ is added only for each
reciprocating node u, i.e., for each u ∈ V such that Ru = 1,
and the probabilities can be updated as follows: p̂v(t, S) =
pv(t, S) for t 6= v′ and v′ /∈ S , p̂v(v

′, S) = pv(u0, S) and
p̂v(t, (S ∪ {u0})− {v′}) = pv(t, S) if v′ ∈ S, where only the
nodes v′ such that Rv = 1 need to be considered.

While the problem (2) requires to know a priori which
users are willing to reciprocate u0, the greedy algorithm can
be implemented online without such knowledge. This practical
greedy algorithm operates in steps, where each step has a
duration at most equal to T time units. At each step the user
follows the node v that brings the largest marginal increase
in comparison to the already selected nodes assuming that
v reciprocates. If node v reciprocates by time T , node u0
maintains user v in his list of followings, otherwise u0 removes
v. The algorithm stops when K users reciprocate or when there
are no more users to select in the network. It is easy to check
that the practical greedy algorithm selects exactly the same
users that the greedy algorithm with a priori knowledge of the
reciprocating nodes would, but it requires in general a longer
time to execute. The reasoning above leads us to conclude that:

Proposition 3. The greedy algorithm for the problem formal-
ized in Eq. 2 can be implemented without a priori knowledge
of which users reciprocate, and its expected number of retweets
is at least (1 − 1/e) of the value obtained by any online
algorithm where each node can be selected at most once and
reciprocation delays of at most T time units are tolerated.

c) Reader problem: Now, we define the influence of a
user u as the average number of users who read u’s tweets,
because they follow u or because they follow someone who has
retweeted one of u’s tweets. This problem can be mapped to
a variant of the previous case (where we consider the number
of retweets) introducing opportune nodes’ weights. We need
to change the original graph (V,E) as follows. For each user
u ∈ V , we introduce a new node u′′ and the directed arcs
(u, u′′) and (v, u′′), for each node v such that (v, u) ∈ E
(see Fig. 1 (b)). We denote V ′′ and E′′ respectively the set of
new nodes and arcs and (Ṽ , Ẽ) the new graph. By doubling
each node, we can separately account for the two roles of a
user as a retweeter and as a reader. Going back to the cascade
model terminology, at a given time step if node u is active, the
corresponding user has retweeted the tweet, and if node u′′ is
active the corresponding user has read the tweet. In order to
correctly model the process, we introduce activation success
probabilities as follows: p̃v(t, S) = pv(t, S) for v ∈ V and
p̃v′′(t, S) = 1 for v′′ ∈ V ′′. We also introduce nodes’ weights
wv = 0 for v ∈ V wv′′ = 1 for v′′ ∈ V ′′. Let Xv be the
Bernoulli random variable that indicates if node v is active
when the cascade terminates. The number of users that see
the tweet is given by ψ(B) =

∑

v∈Ṽ wvXv where B ⊆ V
is the set of followings selected by node u0. Two different
problems can then be defined depending if the set B has to be
selected at the begin or can be changed dynamically, similarly
to what is done above. The only difference is the fact that the
weighted objective function E [ψ(B)] is considered instead of
the unweighted one E [ϕ(B)]. Obviously the function E [ψ(B)]



is non-negative and non-decreasing, we can also prove the
following result.

Proposition 4. The function E [ψ(B)] is submodular.

Proof: We adapt some results of Kempe et al. [3] relative
to the size of the different sets to the case where we consider
a weighted sum of the set elements. We need to prove that
ψ(B1 ∪ {z}) − ψ(B1) ≥ ψ(B2 ∪ {z}) − ψ(B2) for any z
whenever B1 ⊆ B2. Let C = φ(B) be the (random) set of
nodes active at the end of the cascade starting from the nodes
in B. Imagine now to start a new cascade process on the graph
activating node z, but taking into account the fact that all the
nodes in C have already tried to infect their neighbors. This
new cascade is called the residual cascade process and has

success probabilities p
(C)
v (u, S) , pv(u, S ∪ C). We denote

this new stochastic process as SC(z) and the additional nodes
in V \ C made active by it as φC(z). Kempe et al. [3, Theo-
rem 3] proved that φC(z) is distributed as φ(B∪{z})−φ(B).
Then it holds:

E [ψ(B ∪ {z})− ψ(B)] = E





∑

v∈φφ(B)(z)

wv



 (3)

Consider C1 ⊆ C2, and the corresponding residual processes
SC1(z) and SC2(z). If we couple the equivalent general
threshold models by selecting the same threshold at each node,
Kempe et al. [3, Lemma 3] showed that pathwise φC1(z) ⊇
φC2(z). It follows that

∑

v∈φC1 (z)
wv ≥

∑

v∈φC2 (z)
wv and

then

E





∑

v∈φC1 (z)

wv



 ≥ E





∑

v∈φC2(z)

wv



 whenever C1 ⊆ C2.

(4)
Let us now consider two cascade processes whose initial
activation sets are respectively B1 and B2 with B1 ⊆ B2,
if we couple them as above, we can similarly show that
φ(B1) ⊆ φ(B2), then

P (φ(B1) = C1, φ(B2) = C2) = 0 whenever C1 6⊆ C2. (5)

We can now wrap-up our intermediate results. Let B1 ⊆ B2,
then

E [ψ(B1 ∪ {z})− ψ(B1)] = E





∑

v∈φφ(B1)(z)

wv





=
∑

C1

E





∑

v∈φC1(z)

wv



P (φ(B1) = C1)

=
∑

C1

∑

C2⊇C1

E





∑

v∈φC1 (z)

wv



P (φ(B1)=C1, φ(B2)=C2)

≥
∑

C1

∑

C2⊇C1

E





∑

v∈φC2 (z)

wv



P (φ(B1)=C1, φ(B2)=C2)

=
∑

C2

E





∑

v∈φC2(z)

wv



P (φ(B2) = C2)

= E [ψ(B2 ∪ {z})− ψ(B2)] ,

where we have used Eqs. (3), (4) and (5).

From the general results for non-negative, non-decreasing
submodular functions, it follows that the greedy algorithm that
selects orderly the u0’s followings that incrementally maximize
E [ψ(.)] guarantees a (1− 1/e) approximation ratio. The same
result holds in the dynamic case. Due to lack of space we do
not define formally the two problems and the corresponding
propositions, but we summarize our conclusions as follows.

Proposition 5. The greedy algorithms for the static and dy-
namic versions of our problem reach a (1−1/e) approximation
ratio also when the objective function is E [ψ(.)], the expected
number of users who see the tweet.

III. SIMULATIONS ON TWITTER

We have shown in the previous section that for all three
specificities of OSNs, the greedy algorithm is a good approx-
imation of the optimal algorithm. As the optimal algorithm
is NP-hard, it is a major improvement. Unfortunately, the
greedy algorithm requires to know the topology of a social
graph as well as all the functions pv(u, S) for every node v, a
requirement that is not feasible for the social graph of the size
of Twitter. Moreover, greedy algorithms are computationally
expensive, because of the inherent cost of evaluating the
expected size of φ(A), that can only be estimated by Monte
Carlo simulations of the cascade process on the social graph.

In this section, we show using simulations on the full
Twitter social graph that simple and practically feasible strate-
gies perform close to the greedy algorithm. We describe the
methodology we used to perform our simulations in Sec-
tion III-A and we discuss the results in Section III-B.

A. Methodology

For our simulations, we considered the simple case when
pv(u, S) = p is constant and evaluated different selection
strategies on the complete social graph of Twitter as crawled
in July 2012 [5]. We had to solve two main problems.

The first problem to solve with the simulations is to manage
the large size of the Twitter social graph. Indeed, this graph
consists of 505 million nodes and 23 billion arcs and requires
roughly 417GB of storage in the form of edgelist. A naive
implementation of the simulation would require to load the
graph into memory and then use Monte Carlo simulations of
the retweet process in order to estimate the objective functions
with high accuracy. The followers of the initial node u0 would
retweet with probability 1, then their followers will retweet
with probability p and so on until no new node is retweeting.
To reduce the memory required to make this computation, we
introduce the concept of pruned graphs. A pruned graph is
obtained from the original one by sampling each edge with
probability p (and with probability 1− p the edge is removed
from the graph). Computing the set of reachable nodes from
u0 on a pruned graph is equivalent to counting the number of
retweeting nodes in a specific sample of the retweet random
process, but memory requirement is reduced by a factor p
(usually p << 1) at the expense of storage increase, because
we need to work on multiple pruned graphs (see discussion
below) in order to reach the required accuracy.



However, for large values of p the pruned graphs are
still large, so to reduce further the memory requirement, we
use a two step compression. First we compute the Strongly
Connected Components (SCCs) of the graph. Second, we
construct a Directed Acyclic Graph (DAG) by abstracting each
SCC as a single node and replacing multiple arcs between
the nodes with a single arc. Provided that p is quite large,
we will observe big SCCs in the pruned graph, thus we can
achieve a big reduction in size using our approach. Then we
compute the reachability on the obtained DAG and deduce the
reachability of the original pruned graph by taking into account
the number of nodes in each SCC and the fact that the nodes
belonging to the same SCC have the same reachability. This
approach decreases the computation time, as well as memory
and storage requirements (because of the more compact DAG
representation). Both these expedients were proposed by Chen
et al. [6], but we have been able to make computations on a
graph 4 orders of magnitude larger.

The second problem to solve is to determine how many
simulations we should run (that is, how many pruned graph we
should compute) in order to achieve a given precision for the
estimates of the expected number of retweets. To this purpose,
we have used two different models that we can only describe
shortly here because of space constraints (details are available
in a technical report [10]). The first model approximates the
cascade process with a branching process, where the proba-
bility to have a follower with k followers is kqk/〈k〉, where
qk is the distribution of the number of followers in the graph
and 〈k〉 is the average number of followers (see for example
[11, Chapter 8] for a justification of such an expression).
This model requires that different active nodes have different
followers and is good only for small values of p. In particular,
it may be accurate only when the branching process dies out
with probability 1, because otherwise the model predicts that
the expected number of active nodes is infinite while this
number is obviously limited by the total number N (= |V |) of
nodes in the graph. The branching process extinguishes with
probability 1 if p

∑

k kqk/〈k〉 < 1, i.e., p < 2 × 10−4 in
the considered Twitter graph. The second model addresses the
case for p > 2 × 10−4. In this case the branching process
theory predicts that the process can still extinguish with a
probability pext that is a decreasing function of p. The intuition
behind the second model is to couple the branching process
and the actual cascade model and assume that the cascade
will reach almost all the N nodes when the branching process
does not extinguish and a negligible number of nodes when it
does. In particular, given that we are interested in providing
upper-bounds for the variability of the process, we simply
consider that the number of active nodes is a random variable
that is equal to N with probability 1 − pext and to 0 with
probability pext. Some further refinements of the model lead to
the conclusion that the number of samples needed to achieve
a reasonable prevision is below 100 for all the values of p
we considered, i.e., p = 10−4, 10−3, 10−2, 10−1. This result
is quite surprising, given the high variability of the degree
distribution {qk} (that is power law) and the even higher
variability of the skewed distribution {kqk/〈k〉}.

With the approach described above we have been able to
perform our simulations on the real Twitter social graph with
hundreds of millions of nodes and tens of billions of arcs.

B. Results

In this section, we compare using simulations three se-
lection strategies for the user u0 to select his followers: i)
the greedy strategy described above; ii) the high-degree
strategy which consists in picking the nodes orderly according
to their number of followers (from the largest number to the
smallest); iii) the random strategy where followers are selected
uniformly at random from the whole set of users.

We have to evaluate the impact of two main parameters:
the retweet probability p and the reciprocation probability r.
We start by considering the impact of p on the three selection
strategies by assuming r = 1, i.e., u0 is followed by every
node it follows. While unrealistic, this assumption is an easy
way to assess the impact of p only. Then in a second set of
simulations, we relax this assumption and define r as a function
of the number of followings and followers of each node.

In our first set of simulations, we consider r = 1
and that u0’s followers retweet u0’s tweets with probability
1, while all the other users retweet with probability p ∈
{10−4, 10−3, 10−2, 10−1}. Fig. 2 shows the expected number
of retweets versus the initial number K of followers u0
can choose. The average number of followers in the original
graph is 〈k〉 ≈ 45, but the effective density, as defined by
Habiba et al. [7], is 〈k〉p ≈ 4 ∗ 10−3 for p = 10−4 (in
Fig. 2 (a)). Then, in this case, most of the nodes are not
retweeted by any follower, but due to the skewness of the
distribution {qk} (the number of followers can be as high as
24,635,412), there are some hubs in the social graph that have
an expected number of retweeters significantly larger than 0.
The cascade processes from different followers of u0 do not
overlap much (each pruned graph is almost a forest of small-
depth trees with a multitude of singletons), so that the high-
degree strategy performs almost as well as the greedy strategy.
Due to this structure, the expected number of retweeters
significantly increases as the number of u0’s followers keeps
increasing. The random strategy performs poorly, because with
high probability the 200 selected followers will be singletons.
When p = 10−3 (Fig. 2 (b)), the cascade originated from the
node with the largest degree is already able to reach about
3 ∗ 106 users (roughly 1% of the whole social graph) and both
the greedy and high-degree strategy select this node first. The
other followers selected from u0 using these two strategies lead
to a minor improvement: even adding 199 more followers, the
expected number of retweeters increases by only 33%. The
random strategy starts paying off because there are much less
singletons in the pruned graph. Further increasing p to 10−2,
the contribution of the first follower is even larger and the
contribution of the others even more marginal, as it is shown
in the plot in Fig. 2 (c). In fact, a non-negligible SCC appears
in most of the pruned graphs and a careful choice of the first
follower allows u0 to have roughly one tenth of the nodes
retweeting his tweets (this follower is not necessarily in the
largest SCC, but he can reach it). The other 199 followers
provide roughly 5% more retweeters. We observe that the
effective density is about 0.4, then more than half of the
nodes have 0 out-degree/in-degree in the pruned graphs. The
greedy strategy and the high-degree one lead to a difference
in the number of retweets lower than 2.5%. Interestingly, the
probability to randomly pick a node in the largest SCC is now
quite high, so the random strategy performs close to the other
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(a) p = 0.0001
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(b) p = 0.001
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(c) p = 0.01
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(d) p = 0.1

Fig. 2. Performance of greedy, high-degree, and random strategy on the Twitter social graph for different values of retweet probabilities p. The reciprocation
probability is r = 1. Error bars show the 95% confidence intervals.
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(b) Number of readers

Fig. 3. Extensions of the simulations by taking into account the probability
r that users will follow back (a), and by looking at the number of users who
received the tweet instead of the number of users who retweeted it (b).

two strategies, but with a higher variability as shown by the
large confidence intervals in the figure. Moreover, the figure
shows how the good follower is very likely to be selected
among the first 10-20 nodes. The same reasoning allows to
explain also the curves in Fig. 2 (d) for p = 0.1. In this
case, greedy and high-degree are almost indistinguishable and
random has almost the same performance for K ≥ 20.

In our second set of simulations, we consider rv =
min{

#followingsv
#followersv+100 , 1}, where #followingsv and #followersv

are respectively the number of followings and followers for
user v. The rationale behind is that a user with a lot of
followers and a few followings is not likely to reciprocate
u0. We do not claim that this formula has any particular
value, apart from allowing us to simply test the effect of
heterogeneous reciprocation probabilities. In this case the high-
degree strategy selects the nodes according to their effective
degree ridi. Surprisingly, the results for p = 0.01 are qualita-
tively unchanged as shown in Fig. 3 (a). So the reciprocation
probability does not seem to significantly impact the respective
performance of the three considered strategies. We have also
compared the different algorithms in terms of the expected
number of users who can read the tweet. We see in Fig. 3 (b)
that the number of readers is obviously much bigger than the
number of retweeters, but there is no significant difference in
the relative performance of the three strategies.

IV. CONCLUSIONS

In this paper we have considered a user of a social network
who tries to maximize his influence through a careful network-
ing strategy. We have shown how greedy algorithms guarantee

a good 1−1/e approximation ratio, but much simpler strategies
like selecting users with the largest number of followers or
even selecting random users may practically reach the same
performance on real online social networks.
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