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Efficient Numerical Schemes for

Nucleation-Aggregation Models: Early Steps

H.T. Banks ∗ M. Doumic† C. Kruse‡

March 4, 2014

Abstract

In the formation of large clusters out of small particles, the initializing

step is called the nucleation, and consists in the spontaneous reaction

of agents which aggregate into small and stable polymers called nucleus.

After this early step, the polymers are involved into a bunch of reactions

such as polymerization, fragmentation and coalescence. Since there may

be several orders of magnitude between the size of a particle and the size

of an aggregate, building efficient numerical schemes to capture accurately

the kinetics of the reaction is a delicate step of key importance. In this

article, we propose a conservative scheme, based on finite volume methods

on an adaptive grid, which is able to render out the early steps of the

reaction as well as the later chain reactions.

Keywords: polymerization, aggregation-fragmentation models, finite vol-

ume schemes, adaptive grid.

Introduction

In the formation of large clusters out of small particles, the initializing step

is called the nucleation, and consists in the spontaneous reaction of agents

which aggregate into small and stable polymers called nucleus. After this early
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step, the polymers are involved into a wide range of possible reactions, such as

polymerization, fragmentation and coalescence. These reactions vary from one

species to the other, and even from one application field (microtubule or protein

polymerization in general) to the other (phase condensation or crystallization).

To model such nucleation and polymerization processes, deterministic mod-

els consist in huge systems of ordinary differential equations, where there may

be several orders of magnitude between the size of a single agent and the size

of an aggregate. In these systems, the concentration of polymers made-up of i

monomers, i ∈ N, is described by a time-dependent variable ci(t). Its kinetics is

given by a first-order differential equation, coupled with the equations of possi-

bly all the other species. Among such models, we can quote the Bekker-Döring

system [4], discrete growth-fragmentation models [16] or discrete coagulation-

fragmentation models [14].

Continuous coagulation-fragmentation have then been developed, and proved

to be the (weak) limit of the discrete models when an appropriate rescaling is

carried out [4, 14, 7, 19]. In such models, the discrete concentration ci(t) is

replaced by a continuous concentration of polymers at time t of size x c(t, x),

whereas the concentration of monomers c1(t) is treated separetely. The limit

is taken for a vanishing parameter ε := 1
iM

where iM is the average size of a

polymer. The concentration of polymers c(t, x) is then the solution of a one-

dimensional nonlinear first-order integro-partio diffential equation on a space

[0, T ] × [x0, xM ] with 0 ≤ x0 < xM ≤ ∞, and coupled with the equation satis-

fied by the concentration of monomers c1(t).

In these asymptotic results however, the integro-PDE satisfied by c(t, x)

requires a boundary condition at x = x0 ≥ 0 for the problem to be well-posed.

Such a boundary condition is formally derived for different models in [4, 7, 19].

Complete proofs (in a weak formulation) are also provided in [4, 7], but with

some extra assumptions either on the parameters (the polymerization rate needs

to vanish toward zero, so that no boundary condition is necessary anymore) or

on x0 (x0 > 0 is required). Unfortunately, these restrictive cases are often not

physically relevant: x0 > 0 would mean a very large minimal size of stable

polymers, since it has to be in the same order of magnitude as the average size

iM ≫ 1 by assumption, and if we assume a vanishing polymerization rate in 0

then spontaneous formation of polymers from monomers is impossible.

In [19] we proposed a general model to take into account both these large

scale phenomena, modeled by a PDE approximation, and the nucleation step,

which becomes a boundary condition for the smallest polymers. This boundary

condition was formally derived but not theoretically proved, since it fails to

satisfy these restrictive assumptions which were used in the previous studies [4,

7]. We also showed on some specific examples the accuracy of this new model.
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However, it remains to determine how it is possible to capture numerically

the specificity of the nucleation step, because its scale is of infinitesimal size

compared to the scale where continuous models are valid. This early step is of

key importance because it influences the overall dynamics: as shown below, it

decides of the so-called lag time, which is the time needed for the polymerization

chain reaction to ignite when initially the solution only contains monomers.

As concerns numerical schemes for coagulation-fragmentation models, many

successfull studies have already been carried out, for the continuous equations

(see e.g. [3, 12] for Lifshitz-Slyozov including even a space variable, and [1,

11, 10, 9, 8, 13]) as well as for the discrete one [21, 6]. Our purpose here is

not to elaborate on these studies, but rather to focus on the treatment of the

nucleation step, which, to the best of our knowledge, has not yet been treated

when combined with large chain reactions.

In a first section, we will recall the general model proposed in [19], both in

its original ODE version and its approximation by an integro-PDE system. We

then write a simplified version of this system, which is the basis of this article:

since our point is the treatment of the nucleation step, for the sake of clarity we

neglect all the reactions which are of secondary importance while this early step

dominates. In a second section, we detail our numerical strategy: the choice

of an adapted grid, and convenient finite volume schemes. In a third section

we detail which problems we chose to test our methods - one of them having

the main advantage to possess an analytical solution, which allows quantitative

error estimates. We then detail our numerical results. Finally, we discuss our

results and how to adapt our method to more general situations where secondary

pathways need to be considered.

1 Model

1.1 Framework Model and Aim of the Article

In this preliminary section, we recall the general ODE model that we aim to

simulate. This model has been designed to be as general as possible so that any

type of reaction is represented. In all the rest of the article, we will call monomer

the single particle (or dust or atom or molecule) which is the unit agent at the

basis of the aggregation chain reactions. Its concentration is denoted c1(t),

whereas a concentration of polymers of size i (assumed here, for the sake of

simplicity, to belong to a unique species) is denoted ci(t). We consider the

following reactions.

• Activation scheme. The monomer being inert may spontaneously convert
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into an active conformer, whose concentration is denoted c∗1.

c1
k+

I

⇋

k−

I

c∗1

• Nucleation step. There exist a wide variety of nucleation types - homo-

geneous or heterogeneous, progressive or not. Here we chose the type of

reactions proposed by Oosawa and co-authors [17] in the case of many

protein polymerization processes. A nucleus here denotes the smallest

stable size of polymers: smaller ones are highly unstable and too tran-

sitory to be observed. We call i0 the size of the nucleus, whose concen-

tration is ci0 . Instead of modelling a sequential addition (represented by

c1 → c2 → c3 → · · · → ci0), the nucleus formation may be equivalently

represented by an i0 order kinetic reaction, i.e. i0c
∗
1 → ci0 . The nucleus

size i0, of unknown value, can be equal to 1, 2, 3 or even more.

c∗1 + · · ·+ c∗1
︸ ︷︷ ︸

i0

kN
on

⇋

kN
off

ci0

• Chain reaction of polymerization. Polymers of size i quickly polymerize

into polymers of size i + 1 by addition of a monomer at a reaction rate

kion, and may also depolymerize with a rate kidep.

ci + c1
ki
on

⇋

ki+1

dep

ci+1

• Coalescence and fragmentation. Polymers can coalesce with one another

or break into two smaller polymers. We neglect the breakage into 3 or

more pieces, which is generally much more hazardeous, as well as higher

order coalescence of 3 or more polymers for the same reason. We denote

k
i,j
col the coagulation rate of two polymers of respective size i and j, and

k
i,j
off the fragmentation rate of a polymer of size i giving rise to smaller

polymers of size j and i− j, with 2 ≤ j ≤ i0.

ci + cj
ki,j
col

⇋

ki+j,i
off

ci+j

We define K
j
off =

j−2∑

i=2

k
i,j
off . This represents the total rate with which a

polymer of size j can break to give smaller polymers. By symmetry we

have that ki,joff = k
j−i,j
off and k

i,j
col = k

j,i
col.

• Degradation and monomer addition. Each polymer, conformer or monomer

may degrade with a degradation rate kim, k1∗m and k1m respectively, and

monomers may be added to the system with a rate λ(t).
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With these assumptions, the ordinary differential model is given by the sum of

the laws of mass action for each of these reactions, namely

dc1

dt
= −k+I c1 + k−I c

∗
1 − k1mc1 + λ(t), (1)

dc∗1
dt

= k+I c1 − k−I c
∗
1 − i0 k

N
on (c

∗
1)

i0 + i0 k
N
off ci0 − k1∗m c∗1

− c∗1

∑

i≥i0

kion ci +
∞∑

j=i0

k
j
depcj + 2

i0−1∑

i=2

∞∑

j=i0

i k
i,j
off cj ,

(2)

dci0
dt

= kNon (c
∗
1)

i0 − kNoff ci0 − ki0on ci0 c
∗
1 + ki0+1

dep ci0+1 − ki0mci0

+ 2

∞∑

j=i0+2

k
i0,j
off cj −Ki0

offci0 −
∑

j≥i0

k
i0,j
col ci0 cj ,

(3)

dci

dt
= c∗1(k

i−1
on ci−1 − kion ci)− (kidepci − ki+1

dep ci+1)− kimci

+ 2
∞∑

j=i+2

k
i,j
off cj −Ki

offci +
1

2

∑

i0≤j≤i−2

k
j,i−j
col cj ci−j −

∑

j≥i0

k
i,j
colci cj .

(4)

When the early steps of nucleation and conformation are absent, this is a classi-

cal system of coagulation-fragmentation reactions, which turns to be the Becker-

Döring system if we do not consider either fragmentation and coalescence but

only polymerization and depolymerization. This system has a positivity prop-

erty, and satisfies a mass balance equation under the form

d

dt

(

c1(t) + c∗1(t) +
∞∑

i0

ici(t)

)

= λ(t)− k1mc1(t)− k1∗m c∗1(t)−
∞∑

i0

ikimci(t). (5)

Main objective of the article.

Our aim is to simulate this system with a fast and accurate numerical scheme.

Efficiency is necessary since intensive simulations may be necessary, for instance,

to estimate parameters from experimental measures, inverse problem methods

and parameter identification algorithms generally require an important number

of simulations. It is also required if we embed this model into a more complex

one: for instance if we need a space variable [2, 12], or if we want to model the

distribution of polymers in a proliferating cell population [20].

The main difficulty is that we expect i to take values up to 106 or even more

(for instance in the case of Becker-Döring equation, part of the mass goes to

infinity in the super-critical case [18]). This makes an explicit scheme where

each diffential equation for ci is solved time-consuming. That is one of the

reasons for the interest in a continuous approximation of ci as was carried out

in [19], following previous studies [4, 7, 14].
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1.2 Continuous Approximation and Numerical Strategy

The continuous version of this model, formally derived in [19], is the following.

The notation for c1 and c∗1 is unchanged, c(t, x) represents the concentration of

polymers of size x ≥ x0 ≥ 0 at time t, and the parameter functions are defined

similarly. The continuous variable x replaces the discrete one i. Assumptions

that coefficients must satisfy are detailed in [19, Supplementary Data 1].

dc1

dt
= −k+I c1 + k−I c

∗
1 − k1mc1, (6)

dc∗1
dt

= k+I c1 − k−I c
∗
1 −

i0 k
N
on (c

∗
1)

i0+1ki0on

kNoff + ki0onc
∗
1

− k1∗m c∗1 − c∗1

∞∫

x0

kon(x) c(t, x)dx+

∞∫

x0

kdep(x)c(t, x)dx,

(7)

∂c(t, x)

∂t
= −c∗1

∂

∂x

(
kon(x)c(t, x)

)
+

∂

∂x
(kdep(x)c(t, x)

)

+ 2

∞∫

x

koff (x, y) c(y)dy −Koff (x)c(t, x)− km(x)c(t, x)

+
1

2

x∫

x0

kcol(y, x− y)c(t, y)c(t, x− y)dy −

∞∫

x0

kcol(x, y)c(t, x) c(t, y)dy, x ≥ x0,

(8)

kon(x0)c(t, x0) = kon(x0)
kNon (c

∗
1)

i0

kNoff + kon(x0)c1
. (9)

As soon as the average polymer size iM is large, this system is expected to

be a good approximation of System (1)–(4). A second-order approximation for

the polymerizing-depolymerizing terms has been proposed by S. Haris and J.-

F. Collet in [5], and is expected to be second-order accurate as shown by the

formal calculation carried out in [4] with respect to ε = 1
iM

. The problem is

that if i0 ≪ iM , what is most often the case, there is a priori no reason for

this approximation (and even the second order one) to be accurate, since the

main assumption, which is the large size of i, fails to be satisfied. Our numerical

strategy is thus the following.

Let us set ε the typical precision that we want to achieve.

• For sizes i ≤ N0 = 1 + ⌊ 1
ε⌋, we solve the original ODE system described

by (1)–(4) by an accurate scheme of the desired order.

• For sizes larger to N0, we solve the PDE given by (8) by an appropri-

ate finite volume scheme, as described in Section 2, and define a proper
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approximation of the polymerised mass
∞∫

N0

xc(t, x)dx. For this step, it is

also possible to take advantage of existing schemes, such as developed

in [1, 11, 10, 9, 8, 3, 12] for instance.

• We define c1 by its equation and c∗1 by the mass conservation relation.

This corresponds to solving a mixed ODE and PDE system, that we write below

in the simplified case we will now focus on.

In order to keep the physical meaning and orders of magnitude, let us note

that we did not carry out any dimensionless writing of the equation. This

leads to large values of x in Equation (8) and to not small values for our space

step ∆x ≥ 1. The expected precision is not linked to a small ∆x but rather

to a small ratio ∆x
x , assumed to be in the order of ε. In this case, our PDE

approximation is perfectly valid under the same kind of assumptions as in the

previous studies [4, 7, 19], for instance if we assume kon(x) = Kon(εx) with

a function Kon ∈ C1
b independent of ε. This also means that the larger x, the

more we neglect small variations of the coefficients. This is at least correct while

nucleation and small polymers dominate the reactions.

1.3 Simplified Model

Since our will here is to study the nucleation step and how we can build adapted

numerical schemes, for the sake of simplicity we describe our method on a simpli-

fied case, meant to be combined with existing numerical schemes for coagulation-

fragmentation or Lifshitz-Slyozov-Wagner equation.

We study the case when fragmentation, coalescence, depolymerization and

death are not present, and we apply the previously described strategy. The

ODE system is then the following.

dc1

dt
= −k+I c1 + k−I c

∗
1, (10)

dc∗1
dt

= k+I c1 − k−I c
∗
1 − i0 k

N
on (c

∗
1)

i0 + i0 k
N
off ci0 − c∗1

∑

i≥i0

kion ci, (11)

dci0
dt

= kNon (c
∗
1)

i0 − kNoff ci0 − ki0on ci0 c
∗
1, (12)

dci

dt
= c∗1(k

i−1
on ci−1 − kion ci), (13)

and the mass conservation - which may replace either Equation (10) or (11),

becomes
d

dt

(

c1(t) + c∗1(t) +

∞∑

i0

ici(t)

)

= 0. (14)
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2 Numerical Scheme

The domain size in the order of up to a million (shown in experiments as a max-

imal size for protein polymers, but still larger for other applications like cluster

formation) is a challenge in the computations. Our simplified model starts with

an initial concentration of only monomers. After the nucleation step, the poly-

mers bind one monomer at a time. After the usually relevant observation times,

smaller polymers are thus found at a higher concentration than larger polymers.

A uniform grid, which ideally should not contain a large amount of elements for

still being computationally fast, does not capture these peaks at the left-hand

side of the polymer distribution efficiently.

As explained in Section 1.2, we approximate (13) by solving the ODE system

as long as i ≤ N0 and by a PDE for x ≥ N0. The system of equations is then

given as

dc1

dt
= −k+I c1 + k−I c

∗
1, (15)

dc∗1
dt

= k+I c1 − k−I c
∗
1 − i0 k

N
on (c

∗
1)

i0 + i0 k
N
off ci0

−c∗1

( N0∑

i0

kion ci +

∞∫

N0

kon(x)c(t, x)dx

)

,
(16)

dci0
dt

= kNon (c
∗
1)

i0 − kNoff ci0 − ki0on ci0 c
∗
1, (17)

dci

dt
= c∗1(k

i−1
on ci−1 − kionci), i ≤ N0, (18)

∂c

∂t
= −c∗1∂x(kon(x)c(x, t)), x > N0. (19)

with

c(t = 0, x) = cin(x), c(t, x = N0) = cN0
(t) (20)

and the mass conservation equation becomes

d

dt

(

c1(t) + c∗1(t) +

N0∑

i0

ici +

∞∫

N0

xc(t, x)dx

)

= 0. (21)

We will now discuss different kinds of finite volume approximations for the

PDE.

2.1 Finite Volume Approximation

We use a finite volume scheme to approximate Equation (19). Let the mesh be

defined by N0 = x1/2 < x3/2 < ... < xN−1/2 = imax with Ii = [xi−1/2, xi+1/2]
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and hi = xi+1/2 − xi−1/2, not necessarily uniform. We define the cell average

on the interval Ii as

Qk
i :=

1

hi

∫ xi+1/2

xi−1/2

c(x, tk) dx =
1

hi

∫

Ii

c(x, tk) dx. (22)

The integral form of (19) on the interval [tk, tk+1] is given by

d

dt

∫

Ii

c(x, t) dx = fi−1/2(c, c
∗
1, t)− fi+1/2(c, c

∗
1, t) (23)

with fi−1/2(c, c
∗
1, t) = c∗1(t)kon(xi−1/2)c(xi−1/2, t). By integration, we obtain

the time stepping scheme

Qk+1
i = Qk

i −
∆t

hi
(F k

i+1/2 − F k
i−1/2) (24)

with

F k
i−1/2 ≈

1

∆t

∫ tk+1

tk

fi−1/2(c, c
∗
1, t) dt (25)

being an approximation to the average flux on the interval [tk, tk+1]. Choos-

ing F k
i−1/2 = c∗1(tk)k

i−1/2
on Qk

i−1 with k
i−1/2
on := kon(xi−1/2), we have the simple

upwind method

Qk+1
i = Qk

i −
∆t

hi
c
∗,k
1 (ki+1/2

on Qk
i − ki−1/2

on Qk
i−1). (26)

This scheme is of first order. To increase the accuracy of the numerical simula-

tions, we add a second order correction term and employ a Flux Limiter method

on a non-uniform mesh [15, Chapter 6.17.1]. We have

Qk+1
i = Qk

i −
∆t

hi
c
∗,k
1 (ki+1/2

on Qk
i − ki−1/2

on Qk
i−1)−

∆t

hi
(F̃ k

i+1/2 − F̃ k
i−1/2), (27)

where we approximate the correction term by

F̃
k
i−1/2 =

c
∗,k
1

2

(

hi−1 − c
∗,k
1

k
i−1/2
on ∆t

)

k
i−1/2
on

(

Qk
i −Qk

i−1

1

2
(hi−1 + hi)

)

Φ(λk
i−1) (28)

with

λk
i−1 =

{
Qk

i−1−Qk
i−2

Qk
i −Qk

i−1

, Qk
i ̸= Qk

i−1

0, else
. (29)

For Φ(λk
i ) = 1, we obtain the Lax-Wendroff (LW) method which is a classical

second order scheme. However, it often leads to oscillations if sharp fronts are
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present in the solution.

As second choice we use the the Van Leer (VL) Limiter given by

Φ(λ) =
|λ|+ λ

1 + |λ|
=

{

0, λ < 0
2|λ|
1+|λ| , λ > 0

(30)

Last, we will use a combination of Beam-Warming and Lax-Wendroff (BWLW)

defined through

Φ(λ) =







0, λ ≤ 0

λ, 0 ≤ λ ≤ 1

1, 1 ≤ λ.

(31)

2.2 Implementation of Boundary conditions

To advance the overall algorithm by one time step, we first compute ci0(tk+1)

and solve the finite ODE system ck+1
i for i = 1, .., N0. The computation of Qn+1

1

in (24) requires the flux F k
−1/2 which is outside the defined problem domain.

One approach would be to employ a special formula for the first cell and to

compute the flux (25) by numerical integration. This is in our case not possible

as c
∗,k+1
1 is necessary, but still unknown (we will discuss the exact algorithm

in section 2.3). As alternative, we use a ghost cell approach as defined in [15].

The main idea is to make use of the solution of the ODE at time tn. As we

i0i0 i0 i0
i 0c i 0c i 0c

N0N0N0
cN0cN0cN0

+1 +2

x x−1/2−3/2 1/2 xx x x3/2 5/2 7/2

QQ Q Q Q−1 0 1 2 3

+1 +2 ...

...

imax

...

...

−1−2

−2 −1

Figure 1: Mesh interpretation for ghost cell approach

have a hyperbolic equation, all information is transported along the streamlines

through the domain. We define x−1/2 := N0 − 1, x1/2 = N0 and define the

linear function

g(x) = cN0−1 + (x−N0 + 1) (cN0
− cN0−1) (32)

for x ∈ [N0 − 1, N0]. We then define

Qk
0 :=

∫ x1/2

x
−1/2

g(x) dx (33)

and consequently obtain (26).

10



2.3 The algorithm

To obtain c
∗,k
1 , we need to compute the total polymerized mass Mk. In case

of our ODE-PDE approximation, the total polymerized mass is given by Mk =

Mk
ode +Mk

pde with

Mk
ode =

N0∑

i=i0

icki , Mk
pde =

∫ ∞

N0

xc(x, tk) dx.

Let now xi be the midpoint of Ii, i.e. xi =
1
2 (xi−1/2 + xi+1/2). As in [12], we

use the approximation

Mpde(tk) =
N∑

i=1

∫

Ii

xc(x, tk) dx ≈
N∑

i=1

xi

∫

Ii

c(x, tk) dx =
N∑

i=1

xihiQ
k
i .

The computational algorithm is thus given by

1. Given c∗1(tk), compute ci0(tk+1).

2. Given ci0(tk), solve the finite ODE system for ck+1
i , i = 1, .., N0.

3. Given ckN0−1, c
k
N0

, compute a ghost cell average Qk
0 . (Analogously for Qk

−1,

Qk
−2 in case of the flux limiter methods).

4. Solve the PDE using one of the methods defined in section 2.1 and obtain

c(xi, tk+1) for i = N0, .., N

5. Compute M(tk+1) and update c∗1(tk+1) with the mass balance equation

(21), i.e. c∗1(tk+1) = Mk+1
ode +Mk+1

pde − c1(tk+1).

Remark 1. Time discretization.

In our numerical implementation, the ODE systen (36) for i ≤ N0 is solved with

the forward Euler method. This scheme is explicit and of first order. To make

use of the full higher order convergence that the Lax-Wendroff as well as Flux

Limiter methods provide, it is necessary to also employ a second order scheme

in time. The difficulty herein lays in the algorithm given above. A classical

Runge-Kutta scheme can not be used, as it requires in step 2 the evaluation of

c∗1(tk+1) which is still unknown. A remedy is provided by the Adams-Bashforth

multi-step method, as it depends only on previous time steps. In our discussion

below, we will keep however the backward Euler method. The CFL condition

dictates a rather small time step for stability, such that the measured error is

mainly spatial and convergence rates become clearly visible.

Remark 2. Properties of our scheme.

By replacing (35) with c∗1 = M − c1 = Mode +Mpde − c1, our scheme is conser-

vative for the mass balance by construction. In case of discretizing the PDE by
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the upwind scheme, we also have a positive method. On the uniform mesh, the

Lax-Wendroff method as defined in (27) is consistent and of second order [15,

Chapter 9].

3 Numerical Experiments

3.1 Description of numerical examples

3.1.1 Example 1

As a first example, we neglect the conformation step and choose c∗1 = a ∈ R,

use a constant polymerization rate kon ∈ R and set koff = 0. The equations

(10)-(13) then become

c∗1 = a (34)

dci0
dt

= kNon(c
∗
1)

i0 − konci0c
∗
1, (35)

dci

dt
= c∗1kon(ci−1 − ci), (36)

ci(0) = 0, i = i0, ...

A solution in closed form is found to this simplified model.

Lemma 1. For c∗1 = a ∈ R, kon ∈ R and koff = 0, we have

ci0 = −
kNona

i0−1

kon
e−konat +

kNona
i0−1

kon
, (37)

For i > i0, the polymer distribution is given by

ci+1 = ci − (kona)
i−i0

kNona
i0

(i+ 1− i0)!
ti+1−i0e−konat. (38)

Having the exact solution provides the possibility to determine a discretiza-

tion error for the distribution c of our method. However, we chose here to use

a representative parameter set, for which the simulation of (38) becomes nu-

merically unstable. When comparing the discretization error in the following

section, we will therefore use a numerically computed distribution, obtained by

(34), (37) and an explicit very accurate scheme for (36).

The inverse problem uses the total polymerized mass in the cost function, as this

is measured in the experiments. In the following, we derive explicit solutions

for the total polymerized mass to (34)-(36). Let therefore P =
∑

i≥i0
ci. We

12



add up equations (35) and (36) and use the telescoping sum

dP

dt
=

dci0
dt

+
∑

i>i0

dci

dt

= kNon(c
∗
1)

i0 − konci0c
∗
1 +

∑

i>i0

c∗1kon(ci−1 − ci)

= kNon(c
∗
1)

i0 .

With P (0) = 0, we get

P (t) =

∫ t

0

kNon(c
∗
1)

i0 dt = kNona
i0t. (39)

Similarly, we get for the first moment (or total polymerized mass)M =
∑

i≥i0
ici

by multiplying equations (35) and (36) by i and summing over i

dM

dt
= i0

dci0
dt

+
∑

i>i0

k
dci

dt

= i0k
N
on(c

∗
1)

i0 − i0konci0c
∗
1 +

∑

i>i0

c∗1kon((i− 1)ci−1 − ci + ci−1)

= i0k
N
on(c

∗
1)

i0 + Pc∗1kon.

Since M(0) = 0, we get

M(t) =

∫ t

0

i0k
N
on(c

∗
1)

i0 + konc
∗
1P ds = i0k

N
ona

i0t+
konk

N
ona

i0+1

2
t2. (40)

3.1.2 Example 2

In a second example, we again allow a conformation step and choose the poly-

merization function kion to be linear in i, i.e.

kion = k(1)on + ik(2)on

for some constants k
(1)
on , k

(2)
on ∈ R. With this choice for kion, the setting is a

variation of the typical nucleation-aggregation model that we investigate.

dc1

dt
= −k+I c1 + k−I c

∗
1, (41)

dc∗1
dt

= k+I c1 − k−I c
∗
1 − i0k

N
on(c

∗
1)

i0 + i0k
N
offci0 − c∗1

∑

i≥i0

kionci, (42)

dci0
dt

= kNon (c
∗
1)

i0 − kNoff ci0 − ki0on ci0 c
∗
1, (43)

dci

dt
= c∗1(k

i−1
on ci−1 − kion ci). (44)

13



A solution in closed form cannot be found, but we derive an aggregated version

of the model. We follow [19, Supplementary Data 1] and obtain in an analogous

way as above

dP

dt
= kNon(c

∗
1)

i0 − kNoffci0 (45)

and

dM

dt
= c∗1k

(1)
on P + c∗1k

(2)
on M + i0k

N
on(c

∗
1)

i0 − i0k
N
offci0 . (46)

Equations (41)-(43) and (45)-(46) form a (finite) system of ODEs which are eas-

ily solved at a high precision using an explicit scheme. This numerical solution

is then used in section 3.2 to compute an error for the numerical approximation.

3.2 Numerical Results

We now present numerical results to the finite volume schemes applied to the two

examples of the previous section. We make two choices for the mesh required in

the discretization of the PDE. First, we use a simple uniform mesh defined as

xi = N0 + i · h, i = 0, .., N

with h = imax−N0

N . Second, we use a progressive mesh that is defined such that

a ratio between the spatial step size and the corresponding mesh element is kept

constant, i.e. ∆xi

xi
= q < 1. It follows the formula

xi =
1

1− q
xi−1. (47)

Remark 3. The progressive mesh is a quasi uniform mesh in the sense that
∆xi−1

∆xi
= 1− q = 1 +O(h). With this property, it can be shown that the upwind

and Lax-Wendroff methods are consistent on the progressive mesh.

Based on the parameter estimation problem, where the cost-function uses

the total polymerized mass M for the minimization process, we compute the

relative L2([0, T ])-discretization error eM as

eM =
∥Mh −M∥L2([0,T )]

∥M∥L2([0,T )]

with Mh being the solution of the discretized problem. It has to be emphasized

here, that the exact solution M corresponds to the infinite ODE setting, i.e.

M =
∑

i≥i0
ici. We thus compare the numerical solution Mh (discretized by

the ODE-PDE scheme) to the ODE solution. The obtained error is therefore

always influenced by the quality of the continuous (PDE) approximation of the
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ODE system.

In case of example 1, we also compute a relative L2 error for the distribution c

at the final time tN as

ec(tN ) =

(
∑

i≥i0
(c̃i(tN )− ch(x = i, tN ))2

)1/2

(
∑

i≥i0
c̃i(tN )2

)1/2
. (48)

The approximation to the exact solution c is obtained, as described above,

by solving (34), (37) and (36) with ∆tmax = 1e − 3. The integer steps of

ch(x = i, tN ) are obtained by linear interpolation between two grid points xk.

Again, we compare the solution of the ODE-PDE scheme to the (numerical)

ODE solution. The observed error does not obey any convergence results known

from literature for an approximation of a PDE, however it will give a hint about

the convergence of our scheme.

To measure the computational efficiency of the schemes, we also include the

computation times of each method. These are measured using the Matlab tic-

toc command on an Intel Core i7 processor.

3.3 Example 1

We start investigating a uniform mesh for the PDE with N elements and com-

pare the flux limiter methods. The parameters are chosen as

c0 = 285 · 10−6,

kNon = 5.5079 · 103,

kon = 2.1691 · 106,

imax = 3.2907 · 105,

i0 = 3.

These parameters are derived from a previous paper [19], where similar values

were found as best-fit parameters to the polymerization problem and thus rep-

resent some typical values. We choose the maximal time step size ∆t=1e-3. The

smallest time step size is determined by the CFL condition (and thus unknown

a priori). Consequently, we have a fine time stepping and expect to see (for a

rather coarse spatial mesh) mainly a spatial error. We compute the simulations

up to T = 40h. The discretization error eM is found in Table 1 together with

the corresponding convergence rates which are computed in the usual way as

λk
i = log(eM (Nk)/eM (Nk−1))

log(Nk/Nk−1)
indicating the slope of the error curves in Figure 2.

The computation times of each method with corresponding discretization error
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Table 1: Ex.1: Error eM and convergence rates λi for the uniform mesh with

∆tmax=1e-3 and N0 = 100.

N Upw. λ1 LW λ2 VL λ3 BWLW λ4

10 1.7063 1.2790 1.1047 1.2803

20 0.8531 1.00 0.4753 1.43 0.4384 1.33 0.5379 1.25

40 0.4265 1.00 0.1348 1.82 0.1688 1.38 0.2246 1.26

80 0.2132 1.00 0.0312 2.11 0.0638 1.40 0.0933 1.27

160 0.1065 1.00 0.0077 2.01 0.0238 1.42 0.0385 1.28

320 0.0532 1.00 0.0019 2.04 0.0088 1.43 0.0157 1.29

640 0.0265 1.00 0.0004 2.15 0.0032 1.45 0.0064 1.30

1280 0.0132 1.01 0.0001 2.62 0.0012 1.47 0.0026 1.32

2560 0.0065 1.01 0.0000 0.52 0.0004 1.54 0.0010 1.35

5120 0.0032 1.03 0.0001 -0.44 0.0001 1.77 0.0004 1.43

are presented in Table 2 and the polymer distributions are given in Figure 4.

The simple upwind method converges with a rate of 1, while the Lax-

Wendroff method with a rate of 2. The Flux-Limiter methods are between

1 and 2with Van-Leer Limiter showing a somewhat better convergence. The

uniform mesh does not take the high concentration of smaller polymer sizes

into account, but gives each spatial interval equal importance. The exact poly-

mer distribution ci to example 1 contains a sharp front. It is thus expected

and confirmed in Figure 4 that this feature will not be captured properly. The

upwind method on a uniform grid smooths out the sharp front. While the Lax-

Wendroff method converges the fastest for M , it leads to big oscillations for the

distribution ci. The flux limiter methods avoid oscillations and approximate the

sharp front better than the upwind method method. On the other hand, they

have a slightly bigger error eM than Lax-Wendroff.

The first experiment for the progressive mesh keeps the ratio q fixed and changes

N0. The error does not change significantly. Due to the constant inflow of

conformers and as seen in Figure 3, the distribution ci is constant for smaller

polymer sizes. Any of the four proposed discretization methods approximates a

constant accurately. The number of N0 is thus, for this particular example, not

important. In the following simulations, we set N0 = 100.

The second experiment for the progressive mesh focuses on the convergence

of the error in q (or in the corresponding number of elements N). All meth-

ods converge satisfactorily (Table 4 and 5 and Figure 3). In terms of the error
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Table 2: Ex.1: Error eM for the uniform mesh and computation time cti,

∆tmax=1e-3, N0 = 100

N Upw. ct1 LW ct2 VL ct3 BWLW ct4

10 1.7063 1.58 1.2790 2.93 1.1047 3.50 1.2803 3.69

20 0.8531 1.60 0.4753 3.04 0.4384 3.85 0.5379 3.77

40 0.4265 1.62 0.1348 3.11 0.1688 4.80 0.2246 4.01

80 0.2132 1.74 0.0312 3.23 0.0638 4.21 0.0933 4.29

160 0.1065 2.03 0.0077 3.70 0.0238 4.59 0.0385 4.53

320 0.0532 2.21 0.0019 4.21 0.0088 4.87 0.0157 5.34

640 0.0265 2.73 0.0004 5.02 0.0032 6.18 0.0064 6.72

1280 0.0132 3.92 0.0001 7.37 0.0012 9.00 0.0026 9.85

2560 0.0065 7.74 0.0000 15.04 0.0004 17.91 0.0010 19.99

5120 0.0032 12.74 0.0001 25.54 0.0001 29.79 0.0004 32.75

Table 3: Ex.1: Error eM for the progressive mesh with ∆tmax = 10−3

q N0 N BWLW Upwind LW VL

0.10 10 97 0.0554 0.00549 0.0126 0.0199

0.10 100 77 0.0554 0.00549 0.0127 0.0199

0.10 1000 55 0.0553 0.00549 0.0127 0.0199

0.01 10 1009 0.0049 0.00005 0.0003 0.0008

0.01 100 803 0.0049 0.00003 0.0003 0.0008

0.01 1000 577 0.0049 0.00002 0.0003 0.0008

eM , the Lax-Wendroff method is best but again exhibits oscillations in the dis-

tribution c. In Figure 6, we present the relative error erel(t) = |Mh(t)−M(t)|
|M | .

At the beginning, all methods have a big relative error. The model uses an

instantaneous inflow of conformers which could be compared to a Dirac-delta

function. Since all methods start with solving (36) up to i = N0, this peak is

the same for all cases. For t ≥ 1, the relative error is about constant and thus

the approximation Mh is found in a fan-shaped environment around M . It is

clearly shown that Lax-Wendroff gives the best approximation to M , while the

upwind method the worst.

Comparing the two meshes, the error using the progressive mesh is smaller

than for the uniform mesh.

Conclusively, a choice for practical simulations would be a flux limiter method

to avoid the oscillations in the approximation of ci in combination with a pro-

gressive mesh to make use of the smaller error.
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Table 4: Ex.1: Error eM and convergence rates λi for the progressive mesh with

∆tmax = 10−3 and N0 = 100

q N Upwind λ1 LW λ2 VL λ3 BWLW λ4

1/2 12 0.4995 0.2525 0.2780 0.3329

1/4 29 0.1665 1.2451 0.0416 2.04 0.0614 1.71 0.0830 1.57

1/8 61 0.0713 1.1409 0.0089 2.08 0.0182 1.63 0.0277 1.48

1/16 126 0.0332 1.0536 0.0020 2.04 0.0060 1.53 0.0102 1.38

1/32 255 0.0160 1.0357 0.0004 2.17 0.0020 1.53 0.0039 1.36

1/64 513 0.0078 1.0266 0.0001 2.91 0.0007 1.56 0.0015 1.37

1/128 1029 0.0038 1.0312 0.0000 0.34 0.0002 1.76 0.0005 1.44

1/256 2062 0.0018 1.0413 0.0001 -0.86 0.0000 3.00 0.0002 1.75

Table 5: Ex.1: Error eM and computation time cti for the progressive mesh

with ∆tmax = 10−3 and N0 = 100

q N Upwind ct1 LW ct2 VL ct3 BWLW ct4

1/2 12 0.4995 1.49 0.2525 2.78 0.2780 3.47 0.3329 3.61

1/4 29 0.1665 1.5157 0.0416 2.90 0.0614 3.50 0.0830 3.68

1/8 61 0.0713 1.8885 0.0089 3.12 0.0182 3.76 0.0277 3.86

1/16 126 0.0332 2.4272 0.0020 4.27 0.0060 5.24 0.0102 5.52

1/32 255 0.0160 1.9706 0.0004 3.64 0.0020 5.05 0.0039 5.99

1/64 513 0.0078 2.4639 0.0001 4.50 0.0007 5.64 0.0015 6.14

1/128 1029 0.0038 3.5800 0.0000 6.82 0.0002 8.48 0.0005 9.51

1/256 2062 0.0018 11.8933 0.0001 22.70 0.0000 27.55 0.0002 31.11

Table 6: Ex.1: Error ec and convergence rates λi for the uniform mesh with

∆tmax = 10−3 and N0 = 100

N Upwind λ1 LW λ2 VL λ3 BWLW λ4

80 3.11e-01 2.35e-01 2.52e-01 2.59e-01

160 2.58e-01 0.27 1.94e-01 0.27 1.89e-01 0.42 1.98e-01 0.39

320 2.14e-01 0.27 1.62e-01 0.26 1.41e-01 0.42 1.52e-01 0.38

640 1.78e-01 0.27 1.33e-01 0.28 1.04e-01 0.43 1.16e-01 0.39

1280 1.47e-01 0.27 1.08e-01 0.31 7.55e-02 0.47 8.71e-02 0.41

2560 1.21e-01 0.28 8.50e-02 0.34 5.24e-02 0.53 6.36e-02 0.45

5120 9.88e-02 0.29 6.48e-02 0.39 3.32e-02 0.66 4.40e-02 0.53
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Figure 2: Example 1: Convergence plots for error eM (uniform mesh)
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Figure 3: Example 1: Convergence plots for error eM (progressive mesh)
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Figure 4: Example 1: Polymer Distribution (uniform mesh)
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Figure 5: Example 1: Polymer Distribution (progressive mesh)
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Figure 6: Example 1: Development of error erel in time (progressive mesh) for

q=1/32, N0 = 100 and ∆tmax = 10−3
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Table 7: Ex.1: Error ec and convergence rates λi for the progressive mesh with

∆tmax = 10−3 and N0 = 100

q N Upwind λ1 LW λ2 VL λ3 BWLW λ4

1/8 61 0.2521 0.1931 0.2113 0.2153

1/16 126 0.2039 0.2927 0.1500 0.35 0.1520 0.45 0.1586 0.42

1/32 255 0.1670 0.2831 0.1204 0.31 0.1093 0.47 0.1176 0.42

1/64 513 0.1371 0.2821 0.0965 0.32 0.0775 0.49 0.0865 0.44

1/128 1029 0.1121 0.2890 0.0758 0.35 0.0528 0.55 0.0620 0.48

1/256 2062 0.0910 0.3010 0.0582 0.38 0.0329 0.68 0.0421 0.56

1/512 4128 0.0727 0.3227 0.0434 0.42 0.0170 0.95 0.0255 0.72
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3.4 Example 2

In the second numerical example, we approximate (41)-(44) using (15)-(19).

The polymerization function is chosen as kion = k1on + ik2on for the ODE, and as

kon(x) = k1on + xk2on in the continuous case. We take the following parameters

c0 = 285 · 10−6,

k+I = 5.7428 · 10−1,

k−I = 1 · 10−2,

kNon = 5.5079 · 103,

k1on = 8.2766103,

k2on = 6.5916 · 103,

imax = 3.2907 · 105,

i0 = 3.

The simulated curve for the total polymerized mass has a typical shape for the

polymerization-aggregation model. After having a lag-phase at the beginning

where the conforming step takes place, it grows steeply (polymerization) and

damps out in the end when all monomers are bound to a polymer.

We again discuss the convergence of the different suggested schemes in terms of

the total polymerized mass M . This example does not provide an exact solu-

tion. We solve the (finite) system of ODEs (41)-(43) and (45)-(46) numerically,

which gives a good approximation M̃ to the exact solution. The approximation

error is then computed as

eM̃ =
∥M̃ −Mh∥L2([0,T ]

∥M̃∥L2([0,T ]

(49)

We define a maximum time step size to solve the ODE system for M̃ , while the

minimum time step size is determined through the CFL condition. In the follow-

ing numerical computations, we use ∆tmax = 10−4. For the uniform mesh, we

distinguish two different N0. The errors eM̃ vs. the convergence rates as well as

computation times for the four different methods using the uniform mesh with

N0 = 100 and N0 = 500 are given in Tables 8 - 11. For the progressive mesh, the

errors eM̃ and convergence rate are given in Tables 12 - 16. We distinguish be-

tween ∆tmax = 0.5·10−3 and ∆tmax = 10−3, as well as N0 = 100 and N0 = 500.

For the uniform mesh and N0 = 100 and N0 = 500, the numerical method

has not reached the asymptotic range yet for N , as the convergence rates are

still changing. A convergence rate of 1 for the upwind method and 2 for the
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Table 8: Ex.2: Error eM̃ and convergence rates λi for the uniform mesh with

∆tmax = 10−3 and N0 = 100

N Upwind λ1 LW λ2 VL λ3 BWLW λ4

10 0.5400 0.5234 0.4761 0.5234

20 0.5065 0.09 0.4808 0.12 0.3944 0.27 0.4808 0.12

40 0.4642 0.13 0.4277 0.17 0.2859 0.46 0.4277 0.17

80 0.4130 0.17 0.3649 0.23 0.1796 0.67 0.3650 0.23

160 0.3537 0.22 0.2948 0.31 0.1071 0.75 0.2948 0.31

320 0.2882 0.30 0.2213 0.41 0.0651 0.72 0.2214 0.41

640 0.2207 0.38 0.1504 0.56 0.0389 0.74 0.1505 0.56

1280 0.1568 0.49 0.0888 0.76 0.0209 0.90 0.0891 0.76

2560 0.1023 0.62 0.0432 1.04 0.0094 1.15 0.0439 1.02

5120 0.0615 0.74 0.0164 1.40 0.0034 1.46 0.0173 1.35

10240 0.0345 0.83 0.0044 1.89 0.0010 1.82 0.0057 1.60

LW method are likely. We stop the computations at this point and do not

further investigate on the convergence rates, as the computation times in com-

bination with the size of the error have already reached an impractical size for

our application. It is to be noted that the error eM̃ is smaller for N0 = 500

throughout all methods and mesh sizes. This confirms the theory; the longer we

use the actual ODE model for smaller polymers, the better is the approximation.

In case of the progressive mesh, the numerical scheme ceases to converge at

a certain mesh size. To explain this, we first lowered the maximum time step

size, to exclude that the error is caused by the temporal approximation. Having

a smaller time step however gives an error in about the same ballpark as before.

We conclude that the stagnating error is not caused by the temporal approxima-

tion. Recall that the PDE is only an approximation to the infinite ODE system,

but the error eM̃ is computed with respect to the (numerical) ODE solution.

Increasing N0 to 500 shows a smaller error and the stagnated error is smaller

than in the case of N0 = 100. We thus conclude that we obtained a converged

solution for the chosen N0 for which the error to the ODE model can only be

diminished by choosing a bigger N0 or a better continuous approximation to

the ODE system (e.g. second order PDE).

The goal of this study is to find an efficient scheme for the nucleation step

in terms of accuracy and computation time. Fixing an acceptable computa-

tion time of 1.5s, say, and interpreting M̃ as good approximation to the exact

solution, we can conclude from Tables 13 and 16: For N0 = 100 and for the
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Table 9: Ex.2: Error eM̃ and computation time cti for the uniform mesh with

∆tmax = 10−3 and N0 = 100

N Upwind ct1 LW ct2 VL ct3 BWLW ct4

10 0.5400 0.61 0.5234 0.90 0.4761 1.14 0.5234 1.19

20 0.5065 0.62 0.4808 0.90 0.3944 1.16 0.4808 1.22

40 0.4642 0.62 0.4277 0.93 0.2859 1.18 0.4277 1.23

80 0.4130 0.66 0.3649 1.08 0.1796 1.24 0.3650 1.30

160 0.3537 0.76 0.2948 1.44 0.1071 1.63 0.2948 1.71

320 0.2882 0.89 0.2213 1.78 0.0651 2.06 0.2214 1.76

640 0.2207 1.10 0.1504 1.82 0.0389 2.42 0.1505 2.63

1280 0.1568 2.13 0.0888 4.11 0.0209 5.44 0.0891 5.48

2560 0.1023 8.10 0.0432 16.21 0.0094 21.10 0.0439 21.34

5120 0.0615 24.07 0.0164 50.11 0.0034 62.94 0.0173 73.25

10240 0.0345 104.97 0.0044 198.91 0.0010 234.69 0.0057 267.99

Table 10: Ex.2: Error eM̃ and convergence rates λi for the uniform mesh with

∆tmax = 10−3 and N0 = 500

N Upwind λ1 LW λ2 VL λ3 BWLW λ4

10 0.3900 0.3698 0.3178 0.3697

20 0.3489 0.16 0.3188 0.21 0.2367 0.42 0.3188 0.21

40 0.2992 0.22 0.2586 0.30 0.1515 0.64 0.2586 0.30

80 0.2428 0.30 0.1931 0.42 0.0853 0.83 0.1932 0.42

160 0.1839 0.40 0.1288 0.58 0.0440 0.95 0.1288 0.58

320 0.1283 0.52 0.0736 0.81 0.0205 1.10 0.0736 0.81

640 0.0820 0.65 0.0344 1.10 0.0083 1.32 0.0344 1.10

1280 0.0484 0.76 0.0127 1.44 0.0028 1.55 0.0128 1.42

2560 0.0268 0.85 0.0037 1.76 0.0009 1.71 0.0043 1.58

5120 0.0142 0.92 0.0009 2.09 0.0003 1.66 0.0014 1.61
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Table 11: Ex.2: Error eM̃ and computation times cti for the uniform mesh with

∆tmax = 10−3 and N0 = 500

N Upwind ct1 LW ct2 VL ct3 BWLW ct4

10 0.3900 0.77 0.3698 1.09 0.3178 1.31 0.3697 1.35

20 0.3489 0.78 0.3188 1.07 0.2367 1.34 0.3188 1.42

40 0.2992 0.79 0.2586 1.13 0.1515 1.37 0.2586 1.43

80 0.2428 0.81 0.1931 1.16 0.0853 1.44 0.1932 1.49

160 0.1839 0.88 0.1288 1.29 0.0440 1.55 0.1288 1.62

320 0.1283 0.94 0.0736 1.43 0.0205 2.02 0.0736 1.90

640 0.0820 1.33 0.0344 1.96 0.0083 2.49 0.0344 2.62

1280 0.0484 2.64 0.0127 4.53 0.0028 6.08 0.0128 7.45

2560 0.0268 9.15 0.0037 17.39 0.0009 20.89 0.0043 22.81

5120 0.0142 27.48 0.0009 52.64 0.0003 64.11 0.0014 72.69

Table 12: Ex.2: Error eM̃ and convergence rates λi for the progressive mesh

with ∆tmax = 10−3 and N0 = 100

q N Upwind λ1 LW λ2 VL λ3 BWLW λ4

1/2 12 0.2857 0.2018 0.1253 0.1990

1/4 29 0.1480 0.75 0.0475 1.64 0.0159 2.34 0.0488 1.59

1/8 61 0.0726 0.96 0.0102 2.07 0.0023 2.58 0.0114 1.95

1/16 126 0.0354 0.99 0.0018 2.38 0.0002 3.24 0.0027 1.99

1/32 255 0.0172 1.02 0.0003 2.54 0.0004 -0.73 0.0005 2.48

1/64 513 0.0083 1.04 0.0007 -1.11 0.0007 -0.82 0.0004 0.12

1/128 1029 0.0039 1.09 0.0008 -0.21 0.0009 -0.39 0.0008 -0.83

1/256 2062 0.0017 1.19 0.0008 -0.05 0.0010 -0.28 0.0008 -0.05
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Table 13: Ex.2: Error eM̃ and computational times cti for the progressive mesh

with ∆tmax = 10−3 and N0 = 100

q N Upwind ct1 LW ct2 VL ct3 BWLW ct4

1/2 12 0.2857 0.63 0.2018 0.93 0.1253 1.21 0.1990 1.19

1/4 29 0.1480 0.62 0.0475 0.93 0.0159 1.19 0.0488 1.23

1/8 61 0.0726 0.64 0.0102 0.96 0.0023 1.22 0.0114 1.29

1/16 126 0.0354 0.71 0.0018 1.10 0.0002 1.38 0.0027 1.42

1/32 255 0.0172 0.76 0.0003 1.25 0.0004 1.51 0.0005 1.60

1/64 513 0.0083 0.97 0.0007 1.74 0.0007 1.91 0.0004 2.00

1/128 1029 0.0039 1.16 0.0008 2.14 0.0009 2.82 0.0008 3.11

1/256 2062 0.0017 2.41 0.0008 3.71 0.0010 4.66 0.0008 4.99

Table 14: Ex.2: Error eM̃ and convergence rates λi for the progressive mesh

with ∆tmax = 0.5 · 10−3 and N0 = 100

q N Upwind λ1 LW λ2 VL λ3 BWLW λ4

1/2 12 0.2857 0.2017 0.1252 0.1990

1/4 29 0.1480 0.75 0.0474 1.64 0.0157 2.35 0.0487 1.59

1/8 61 0.0726 0.96 0.0100 2.09 0.0022 2.67 0.0113 1.96

1/16 126 0.0354 0.99 0.0016 2.49 0.0001 4.41 0.0026 2.04

1/32 255 0.0172 1.02 0.0004 1.96 0.0005 -2.53 0.0003 2.98

1/64 513 0.0083 1.04 0.0008 -1.01 0.0008 -0.67 0.0006 -0.86

1/128 1029 0.0039 1.09 0.0010 -0.18 0.0011 -0.33 0.0010 -0.71

1/256 2062 0.0017 1.19 0.0010 -0.04 0.0012 -0.24 0.0010 -0.04

allowed upper temporal bound, the Upwind method achieves a minimal error

of 4 · 10−3, while LW and VL fall below an error of 3 · 10−4. Best performs

the VL method with an error of 0.02% in 1.38s. A similar outcome is observed

for N0 = 500. Again, the VL methods obtains the smallest error of 0.03% in

1.47s, which is about 8x smaller than the corresponding Upwind error. Since

no limiter functions have to be computed, the LW method is faster for roughly

the same small error. However, due to possible oscillations, the VL method is

preferable.

Conclusion

This article proposes a method to deal numerically with both small sizes, pre-

dominant during early reaction phases for instance, and with very large aggre-

gates. It is based on a mixed ODE-PDE approach, which keeps the original

ODE system for small sizes and uses an approximate PDE, on a progressive
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Table 15: Ex.2: Error eM̃ and convergence rates λi for the progressive mesh

with ∆tmax = 10−3 and N0 = 500

q N Upwind λ1 LW λ2 VL λ3 BWLW λ4

1/2 10 0.2022 0.1429 0.0901 0.1406

1/4 23 0.0992 0.85 0.0329 1.76 0.0119 2.43 0.0334 1.73

1/8 49 0.0474 0.98 0.0074 1.98 0.0018 2.50 0.0078 1.92

1/16 101 0.0228 1.01 0.0017 2.05 0.0003 2.45 0.0019 1.97

1/32 205 0.0110 1.03 0.0004 2.17 0.0001 1.32 0.0005 1.99

1/64 412 0.0053 1.06 0.0001 1.37 0.0001 -0.09 0.0001 1.61

1/128 827 0.0024 1.12 0.0002 -0.16 0.0001 -0.15 0.0001 0.21

1/256 1657 0.0010 1.26 0.0002 -0.09 0.0002 -0.14 0.0001 -0.18

Table 16: Ex.2: Error eM̃ and computational times cti for the progressive mesh

with ∆tmax = 10−3 and N0 = 500

q N Upwind ct1 LW ct2 VL ct3 BWLW ct4

1/2 10 0.2022 0.82 0.1429 1.18 0.0901 1.42 0.1406 1.41

1/4 23 0.0992 0.81 0.0329 1.11 0.0119 1.38 0.0334 1.43

1/8 49 0.0474 0.81 0.0074 1.13 0.0018 1.43 0.0078 1.50

1/16 101 0.0228 0.88 0.0017 1.22 0.0003 1.47 0.0019 1.52

1/32 205 0.0110 0.88 0.0004 1.33 0.0001 1.67 0.0005 1.76

1/64 412 0.0053 1.06 0.0001 1.58 0.0001 2.00 0.0001 2.12

1/128 827 0.0024 1.34 0.0002 2.00 0.0001 2.62 0.0001 2.79

1/256 1657 0.0010 1.78 0.0002 3.41 0.0002 4.13 0.0001 4.23

27



Figure 7: Example 2: Convergence plots of error eM̃ (uniform mesh), ∆tmax =

10−3 and N0 = 100
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Figure 8: Example 2: Convergence plots of error eM̃ (uniform mesh), ∆tmax =

10−3 and N0 = 500
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Figure 9: Example 2: Convergence plots of error eM̃ (progressive mesh),

∆tmax = 10−3 and N0 = 100
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Figure 10: Example 2: Convergence plots of error eM̃ (progressive mesh),

∆tmax = 10−3 and N0 = 500
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Figure 11: Example 2: Distribution of polymers at t = 12
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grid, for larger sizes. Tested on simplified cases for which explicit solutions

are available, the method revealed to be accurate, especially when using a flux

limiter method in combination with a progressive mesh.

For the PDE part, we used finite volume methods which were accurate for

the simplified case we were investigating. The methods presented in this paper

neglect the possibility of depolymerization. However, they could be applied

equally, by defining the flux limiter method according to [15, Chapter 9.5]

Fi−1/2 = ki−1/2
on Qi−1 + k

i−1/2
dep Qi + F̃i−1/2 (50)

where F̃i−1/2 is defined in [15, Chapter 9.3.1, (9.19)].

To adapt it to more general equations or to capture long-time asymptotic

behaviors, containing for instance fragmentation or coagulation terms, any other

method could be used as soon as it proved efficient to deal with the continuous

equation considered on a non-uniform mesh. For instance, the very recent and

accurate method developed by T. Goudon, F. Lagoutière and L.M. Tine in [12]

for the Lifshitz-Slyozov equation, even if derived on uniform meshes, can be

adapted on a non-uniform mesh, and others like [10] are already written on

non-uniform grids.
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