
HAL Id: hal-00955444
https://inria.hal.science/hal-00955444

Preprint submitted on 4 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming with Dependent Types in Coq: a Study of
Square Matrices

Nicolas Magaud

To cite this version:
Nicolas Magaud. Programming with Dependent Types in Coq: a Study of Square Matrices. 2004.
�hal-00955444�

https://inria.hal.science/hal-00955444
https://hal.archives-ouvertes.fr

Programming with Dependent Types in Coq:a Study of Square Matri
esNi
olas MagaudProgramming Languages and CompilersS
hool of Computer S
ien
e and EngineeringUniversity of New South Wales, Sydney, AustraliaAbstra
t. The Coq proof system allows users to write (fun
tional) pro-grams and to reason about them in a formal way. We study how to pro-gram using dependently typed data stru
tures in su
h a setting. Usingdependently typed data stru
tures enables programmers to have morepre
ise spe
i�
ations for their programs before starting proving any sig-ni�
ant properties (e.g. total
orre
tness) about these programs.We parti
ularly fo
us on an operational des
ription of square matri
esand their operations. Matri
es are represented using dependent types.A matrix is a ve
tor of rows, whi
h are themselves ve
tors indexed bynatural numbers. We also take advantage of Coq modules system to havematri
es parametrised by a
arrier set. Finally, this operational des
rip-tion of square matri
es
an be extra
ted into a mainstream fun
tionalprogramming language like O
aml.1 Introdu
tionDependent types allow programmers to provide more pre
ise spe
i�
ations fortheir programs. Several programming languages [2, 17℄ have been developed inthe past few years to add some (restri
ted) level of dependen
y to types in fun
-tional programming languages. More re
ently, M
Bride and M
Kinna proposeda new framework [12, 6℄ to develop dependently typed programs more easily. Onthe other hand, proof systems su
h as Coq [5, 3℄
an be viewed as dependentlytyped languages rather than theorem provers. The Coq system itself is basedon the Cal
ulus of Indu
tive Constru
tions [13℄, a λ-
al
ulus with dependenttypes and
apabilities for indu
tive de�nitions. It therefore
an be used as aprogramming language equipped with a very expressive type system.In this paper, we show, via the example of operations on square matri
es andtheir properties, that one
an a
tually program using dependent types withinthe Coq system. However, programming with dependent types within a type-theoreti
 framework like Coq [5℄ remains a
hallenging a
tivity. In parti
ularde�ning fun
tions handling dependently typed stru
tures
an be awkward.1.1 Programming with Dependent TypesIn order to prove a program
orre
t within the Coq system, one
an use tworather di�erent approa
hes. The �rst one
onsists in having two distin
t steps

2to write a program and to prove properties about it. In this
ase, we �rst de�nea fun
tion as we would do in ML or Haskell (i.e. no dependent types involvedyet) and then prove some statements about its properties. The other te
hnique
onsists in using dependent types to embed the full spe
i�
ation of a fun
tioninto its type.Let us illustrate this with the de�nition of a prede
essor fun
tion pred for Peano'sintegers nat. In Coq, Peano's integers are de�ned as an indu
tive type with two
onstru
tors:Indu
tive nat:Set := O:nat | S:nat->nat.We present three distin
t types for the pred fun
tion. We also add some state-ments we need to prove to make sure the de�nition of pred is
orre
t.� We
an de�ne pred exa
tly the way it would be de�ned in ML or Haskell,not using any dependent types to write its type: pred : nat → nat. Then weneed to prove the following statement to make sure we a
tually de�ned theprede
essor fun
tion.
∀n : nat, n = 0 ∨ n = (S (pred n))� We
an de�ne it as a fully-spe
i�ed fun
tion:pred : ∀n : nat, {n = 0} + {p : nat | n = (S p)}.In this
ase, the type of pred is a
tually a full spe
i�
ation of pred. It statesthat, given an n, the fun
tion either returns a proof that n is equal to 0,or returns a p whi
h veri�es the property n = (S p) i.e. a p whi
h is theprede
essor of n. As the type of pred
ontains its full spe
i�
ation, there isno need to make any additional proofs.� Dependent types allow us to be �exible. Even if we do not want to write thefull spe
i�
ation of a fun
tion in its type, we do not have to sti
k to typesavailable in Haskell or ML. Instead, we
an a
tually use dependent types tore�ne the type of the fun
tion, without in
luding its whole spe
i�
ation. Forinstan
e, we
an
hoose to write a prede
essor fun
tion whose type is:pred : ∀n : nat, n 6= 0 → nat.This spe
i�
ation rules out the
ase of 0, however it does not provide anyproof that it
omputes the prede
essor of n. We still need to prove

∀n : nat, ∀H : n 6= 0, n = (S (pred n H))on the side.1.2 Ve
tors and Matri
esIn this paper, we study how to a
tually write programs using dependently typeddata stru
tures within the Coq system. We are also interested in how to
arryout proofs about dependently typed fun
tions.

3We fo
us on matri
es (represented as ve
tors of ve
tors) whi
h look like thenext step into dependently typed programming after ve
tors. Our main goal isto build an operational formalisation of square matri
es, i.e. to write exe
utablefun
tions handling square matri
es and then prove some properties about thesefun
tions. Indeed, after proving lots of properties about matri
es and their op-erations in Coq, we want to be able to run these then
erti�ed programs, eitherwithin the Coq toplevel or in regular fun
tional programming languages su
has ML or Haskell (after extra
ting them from Coq). Other people have beenworking on formalising algebra from a mathemati
al point of view. L. Pottierproposed a
ontribution Algebra [14℄ to the Coq system to deal with algebrai
notions from a mathemati
al point of view. Subsequent developments, in
ludingdes
ribing matri
es and their properties (Linear Algebra) have been
arried outby J. Stein [15℄ re
ently. These formalisations only
onsider the mathemati
alproperties of the notions it deals with, without worrying about how to
omputeon these notions.Lots of programs, in
luding large libraries for parallel
omputations su
h asLAPACK [7℄, deal with programming with matri
es and their various, as e�
ientas possible (sometimes designed on purpose for a single algorithm), representa-tions. In this paper, we really fo
us on the pra
ti
ability of programmingmatri
esoperations using dependent types in Coq rather than e�
ien
y issues. The nu-merous existing representations for matri
es are one of the reasons why we gotinterested in programming with matri
es in the Coq system using matri
es. Ita
tually looks like a promising experimentation �eld for our work about
hang-ing data representation in type theory [11, 9℄. Indeed, matri
es a
tually havenumerous implementations as
on
rete datatypes, depending on whi
h languagethey are implemented with, whi
h appli
ations are targeted, et
.1.3 OutlineIn se
tion 2, we introdu
e the (dependent) datatypes we
hoose to representve
tors and matri
es. In se
tion 3, we de�ne fun
tions on these data types andhighlight the te
hni
alities arising from using dependent types. In se
tion 4, weshow how to make the implementation of matri
es and their operations inde-pendent of the
arrier set by using modules. In se
tion 5, we survey the proofsof some properties of square matri
es, fo
using on some useful proof te
hniques.In se
tion 6, we extra
t our development of square matri
es from Coq to O
aml.Finally, we
on
lude with a dis
ussion on the pra
ti
ability of programming withdependent types in Coq, espe
ially in the
ase of matri
es.2 A Dependently Typed Data Stru
ture for Matri
esIn this se
tion, we de�ne ve
tors and matri
es as indu
tive data types and showsome basi
 properties about them. We start with ve
tors and some of theirproperties. Then from ve
tors, we de�ne matri
es as ve
tors of ve
tors.

42.1 Ve
tors and their Basi
 PropertiesVe
tors are des
ribed by this dependent indu
tive data type:Indu
tive ve
t (A : Set) : nat -> Set :=| vnil : ve
t A 0| v
ons : forall n : nat, A -> ve
t A n -> ve
t A (S n).This de�nition is parametrised by a set A. Ve
tors are de�ned in the same waylists are; with a
onstru
tor for the empty ve
tor (vnil) and a
onstru
tor toadd an element in front of a ve
tor (v
ons). The new feature is that ve
tors areindexed with their length, represented by a natural number. Type informationabout ve
tors may allow to know whether they are empty or not. In parti
ular,it is
lear that an element of type (ve
t A 0) is ne
essarily the empty ve
tor vnil.Given an element u of type (ve
t A (S n)) for some n, it
an be de
omposed intoa head v and a tail vs of length n su
h that u = (v
ons n v vs). However, thesetwo interesting properties are not derived automati
ally from the de�nition.They have to be proven as equations by the user. Performing su
h proofs requireusing a dependent notion of equality.Dependent Equality There is no primitive notion of equality in Coq. Leibnizequality is de�ned as a polymorphi
 indu
tive predi
ate:Indu
tive eq (A : Type) (x : A) : A -> Prop := refl_equal : x = x.When we deal with dependent types, we sometimes need to talk about equalitybetween two obje
ts inhabiting two di�erent instan
es of a type family, e.g.
v : (ve
t t1) and w : (ve
t t2) before a
tually �guring out that t1 and t2 area
tually de�nitionally equal (i.e.
onvertible a

ording to Coq redu
tion rules),and therefore before knowing (ve
t t1) and (ve
t t2) denote the same type. Forthis purpose, Leibniz equality is too restri
tive. However, Coq provides a notionof dependent equality eq_dep we
an use instead.Indu
tive eq_dep (U : Type) (P : U -> Type) (p : U) (x : P p) :forall q : U, P q -> Prop := eq_dep_intro : eq_dep U P p x p xSu
h an equality is useful to establish properties relating the length of ve
torswith their shape. For instan
e, as stated in (1), a ve
tor of length 0 will ne
essar-ily be vnil. Proving the two following properties (note these statements featureLeibniz equality)

∀v : (ve
t 0). v = vnil (1)
∀n : nat; v : (ve
t (S n)). ∃n : nat; v′ : (ve
t n). v = (v
ons n a v′) (2)requires using a dependent equality (here eq_dep) as an intermediate step inthe proof. In the end, we
an prove these equalities only be
ause data involvedon both sides on the equality a
tually lives in the exa
tly same type (up to
onvertibility).

52.2 Matri
es on top of Ve
torsMatri
es are de�ned as ve
tors of ve
tors:matrix := λA : Set. λn : nat. λm : nat. (ve
t (ve
t A n) m).By
onvention, we
onsider matri
es are de�ned by rows. This means anelement of (matrix n m) is a matrix of m rows and n
olumns. From an imple-mentation point of view, it means it is a ve
tor of m rows, ea
h row being itselfa ve
tor of length n.
n

z }| {

m

8

>

>

<

>

>

:

0

B

B

@

.

.

.

.

1

C

C

AFig. 1. Representation of matri
es as ve
tors of rowsObviously, the data stru
ture we
hoose to represent matri
es is polarised.Lines and
olumns play two very di�erent roles: extra
ting a line simply
onsistsin sear
hing this line in the outermost ve
tor stru
ture of matri
es. Howevergetting a
olumn is a bit more tedious, it requires pi
king up the right elementin ea
h row and
ombining all these elements into a new ve
tor of length m.Operations su
h as extra
ting a row or a
olumn require pre
onditions tobe
he
ked in order to make sure the line (resp.
olumn) is a
tually within thebounds of the matrix. For instan
e, the type of the fun
tion get
olumn featuressome pre
onditions:get
olumn : (∀n, m : nat. (matrix n m) → ∀i : nat. 0 < i → i ≤ n → (ve
t m)As we said before, we are interested in a formalisation of square matri
es.Square matri
es are a
tually elements of type (matrix n m) where n and m are thesame. So why did we not de�ne matri
es as (ve
t (ve
t A n) n) ? The main reasonfor this is that the stru
ture of matri
es is not symmetri
. We want to
omputeon matri
es row by row (this would be easy to a
hieve by stru
tural re
ursionon the outermost ve
tor stru
ture), but with a single index,
ase analysis on thenumber of rows will a�e
t the number of
olumns and vi
e-versa leading to alot of trouble. This illustrates that while dependent types allow to have morepre
ise types for data and programs, we should be
areful not to over-spe
ifythese obje
ts, otherwise we will not be able to handle them at all.On
e we de�ned dependently typed data stru
tures for ve
tors and matri
esand some of their basi
 properties, we need to write fun
tions dealing with thesedata.

63 Operations on Ve
tors and Matri
esOperations on ve
tors and matri
es are de�ned either by stru
tural re
ursion and
ase analysis on the stru
ture of ve
tors or by stru
tural re
ursion of the lengthof one of the ve
tors involved in the
omputation. In most
ases, these fun
tionsare de�ned using intera
tive programming. It
onsists in stating the type of thefun
tion we want to de�ne as a goal and taking advantage of the intera
tiveproof system to build the fun
tion step by step keeping tra
k of the expe
tedtype at every single stage. This te
hnique is parti
ularly useful in presen
e ofdependent pattern mat
hing whi
h is usually very di�
ult to get
orre
t in onego. In the rest of this se
tion, we �rst de�ne operations on ve
tors and then reusethem to write fun
tions on matri
es.3.1 Operations on Ve
torsLet us
onsider a single operation �rst:
omputing the opposite of a ve
tor.Fixpoint oppve
t (n : nat) (v : ve
t A n) {stru
t v} :ve
t A n :=mat
h v in (ve
t _ w) return (ve
t A w) with| vnil => vnil A| v
ons p v vs => v
ons A p (Aopp v) (oppve
t p vs)end.oppve
t pro
eeds by stru
tural re
ursion on v. On
e the above de�nition is a
-
epted by the Coq system, two new
omputational rules are added, namely:oppve
t 0 (vnil A)
ι

→ (vnil A)oppve
t (S n) (v
ons A n v vs)
ι

→ v
ons A n (Aopp v) (oppve
t n vs)In this example, all goes well be
ause
ase analysis on the ve
tor v updatesthe index n representing its length.However, if we want to write a fun
tion to add two ve
tors, things get a bitmore te
hni
al. We want the addition fun
tion to have the following type:
∀n : nat. (ve
t A n) → (ve
t A n) → (ve
t A n)It means we only add ve
tors of the same length. The
ode for addve
t shown in�gure 2. It pro
eeds by stru
tural re
ursion on the �rst ve
tor, say v and thenperform two
ase analysis in a row (on v, and then on the other ve
tor v′). Caseanalysis on v yields a pattern looking like (v
ons n1 x1 v1) whereas
ase analysison v′ yields (v
ons n2 x2 v2). Then we would like to re
ursively apply addve
twith arguments v1 and v2. The trouble is v1 has type (ve
t n1) and v2 has type

(ve
t n2). Somehow we lost tra
k of the fa
t n1 and n2 are a
tually equal. Tobe able to apply addve
t, we rewrite v1 of length n1 into a ve
tor (the same onea
tually) of length n2. To do so, we need to know n1 and n2 are the same. This

7is a
hieved by adding an equation k = (S n1) to the pattern mat
hing stru
turemat
h v' in (ve
t _ k) return (k = S n1 -> ve
t A k) with. Inside these
ond bran
h, k will expand to (S n2) and from that, we will get ba
k the linkbetween n1 and n2 using the theorem eq_add_S_tr.Fixpoint addve
t (n : nat) (v : ve
t A n) {stru
t v} :ve
t A n -> ve
t A n :=mat
h v in (ve
t _ k) return (ve
t A k -> ve
t A k) with| vnil => fun v' => vnil A| v
ons n1 x1 v1 =>fun v' : ve
t A (S n1) =>mat
h v' in (ve
t _ k) return (k = S n1 -> ve
t A k) with| vnil => fun h => vnil A| v
ons n2 x2 v2 =>fun h =>v
ons A n2 (Aplus x1 x2)(addve
t n2(eq_re
 n1 (fun n : nat => ve
t A n) v1 n2(eq_add_S_tr n1 n2 (sym_eq h))) v2)end (refl_equal (S n1))end.with eq_add_S_tr : forall (n m : nat), S n = S m -> n = m.Fig. 2. Implementation in Coq of addve
tAs a general rule, fun
tions whose
omputations are stru
turally re
ursive
an be de�ned dire
tly, as shown in �gure 2. However, it is usually far more easyto de�ne them by intera
tive programming, and then retrieve the a
tual termbuilt in the pro
ess. A

ordingly, it would only be pra
ti
able to write fun
tionsde�ned by stru
tural re
ursion on Peano's number in this way, espe
ially, if oneneed to retrieve the shape of a ve
tor from the shape of the index using one ofthe two lemmas (1) and (2) introdu
ed before.3.2 Operations on Matri
esOn
e we have de�ned all operations on ve
tors, we
an go a step further andde�ne fun
tions on matri
es. Addition on matri
es is straightforward and followsa similar pattern to addve
t. We also de�ne a fun
tion
omputing opposites ofmatri
es and implement neutral elements 0n,m and In. De�ning matri
es produ
tis the most te
hni
al part of the formalisation. We had to build several auxiliaryfun
tions.� We start from the produ
t of ve
tors:s
alprod : ∀n : nat. (ve
t n) → (ve
t n) → A

8 This fun
tion is de�ned in exa
tly the same way as addve
t was de�ned inthe previous se
tion.The next two steps aim at de�ning a ve
tor-matrix produ
t.� prodve
tmatrix
omputes the partial produ
t (a
tually only the c last ele-ments of the produ
t) of a ve
tor of length n and a matrix with n rows and
m
olumns.prodve
tmatrix : ∀n, m : nat. ∀v : (ve
t n). ∀w : (matrix m n).

∀c : nat. O ≤ c → c ≤ m → (ve
t c).It is de�ned by stru
tural re
ursion on n, rather than by stru
tural re
ursionon a ve
tor or a matrix.� prodve
tmat is the fun
tion
omputing the produ
t of a ve
tor and a matrix.It
orresponds to the di�
ult bit in the de�nition of produ
t. The mainreason is that we need to get ea
h
olumn of the matrix to multiply it withthe ve
tor, and as we have seen before, the data stru
ture for matri
es is notwell-suited for extra
t
olumns of a matrix.prodve
tmat : ∀n, m : nat. ∀v : (ve
t n). ∀w : (matrix m n). (ve
t m)From an implementation point of view, this fun
tion simply
alls prodve
t-matrix with c := m and proofs that 0 ≤ m and m ≤ m. All the tri
ky
odeis a
tually hidden in prodve
tmatrix.� Finally, we de�ne the produ
t of two matri
es by stru
tural re
ursion onthe �rst matrix. Ea
h time we get a new row of the �rst matrix, we useprodve
tmat to
ompute a new row of the output matrix.prodmat : ∀n, m, p : nat. (matrix m n) → (matrix p m) → (matrix p n)At this point, we have de�ned data stru
tures for matri
es as well as oper-ations on them. However, we postponed the des
ription of the modules systemwe used to write our formal development.4 Introdu
ing Modules and Fun
torsTo introdu
e some modularity and abstra
tion in our development, we wouldlike to use Coq modules [4℄. Coq modules will allow us to des
ribe in a simplemanner whi
h features we expe
t from an implementation of matri
es.We start by spe
ifying what signature a
arrier set should have. Then weprovide the signatures we want for ve
tors and matri
es (see �gure 3). They willbe fun
tors parametrised by the
arrier set.4.1 Spe
i�
ation of a Carrier SetA
arrier set
an be spe
i�ed using the following module de
laration:

9Module Type Carrier.Parameters A : Set.Parameters Aopp : A -> A.Parameters (Aplus : A -> A -> A) (Amult : A -> A -> A).Parameters (A0 : A) (A1 : A).Parameters Aeq : A -> A -> bool.Axiom A_ring : Ring_Theory Aplus Amult A1 A0 Aopp Aeq.Add Abstra
t Ring A Aplus Amult A1 A0 Aopp Aeq A_ring.End Carrier.A
arrier set
onsists of a set A, equipped with an opposite fun
tion Aopp, addi-tion Aplus, produ
t Amult, two distin
t neutral elements for addition (A0) andmultipli
ation (A1) and a pro
edure to de
ide equality Aeq. The set A, togetherwith these operations, must form a ring stru
ture (all the required propertiesare summed up in A_ring, see [5, Chap. 19℄ for a de�nition of Ring_Theory).As an example, we build the
arrier set based on integers Z:Module Z
 : Carrier.Definition A := Z. Definition Aopp := Zopp.Definition Aplus := Zplus. Definition Amult := Zmult.Definition A0 := 0%Z. Definition A1 := 1%Z.Definition Aeq := Zeq.Definition A_ring := ZTheory.End Z
.4.2 A Signature for Matri
esWe omit the module type de
laration for Ve
tors and dire
tly present the moduletype de
laration for Matri
es. This module type (see �gure 3) lists the basi
 op-erations on matri
es as well as all the required properties to ensure that matri
esequipped with addition and produ
t form a ring stru
ture.On
e we would have provided proofs for all the required properties, we wouldbe able to instantiate our module with the
arrier set Z
 for instan
e.Module matrixZ := Matri
es Z
.Eventually, we also provide a module de
laration for square matri
es, whi
hbasi
ally boils down to the same as Matri
es with all indexes equal.

10Module Type TMatri
es.Parameter A : Set.Parameter Aopp : A -> A.Parameters (Aplus : A -> A -> A) (Amult : A -> A -> A).Parameters (A0 : A) (A1 : A).Parameter Aeq : A -> A -> bool.Parameter A_ring : Ring_Theory Aplus Amult A1 A0 Aopp Aeq.Parameter matrix : nat -> nat -> Set.Parameter addmatrix : forall n m : nat, matrix n m -> matrix n m -> matrix n m.Parameter prodmat : forall n m p : nat, matrix m n -> matrix p m -> matrix p n.Parameter oppmatrix : forall n m : nat, matrix n m -> matrix n m.Parameter o : forall n m : nat, matrix n m.Parameter I : forall n : nat, matrix n n.Axiom addmatrix_sym :forall (n m : nat) (w w' : matrix n m), addmatrix n m w w' = addmatrix n m w' w.Axiom addmatrix_asso
 :forall (n m : nat) (w w' w'' : matrix n m),addmatrix n m (addmatrix n m w w') w'' = addmatrix n m w (addmatrix n m w' w'').Axiomaddmatrix_oppmatrix :forall (n m : nat) (w : matrix n m), addmatrix n m w (oppmatrix n m w) = o n m.Axiom addmatrix_zero_l :forall (n m : nat) (w : matrix n m), addmatrix n m (o n m) w = w.Axiom I_mat : forall (m n : nat) (w : matrix n m), prodmat m m n (I m) w = w.Axiom mat_I : forall (m n : nat) (w : matrix n m), prodmat m n n w (I n) = w.Axiom prodmat_distr_l :forall (n m p : nat) (a b : matrix m n) (w : matrix p m),prodmat n m p (addmatrix m n a b) w =addmatrix p n (prodmat n m p a w) (prodmat n m p b w).Axiom prodmat_distr_r :forall (n m p : nat) (a b : matrix p m) (w : matrix m n),prodmat n m p w (addmatrix p m a b) =addmatrix p n (prodmat n m p w a) (prodmat n m p w b).Axiom prodmat_asso
 :forall (n m p q : nat) (a : matrix m n) (b : matrix p m) (
 : matrix q p),prodmat n p q (prodmat n m p a b)
 = prodmat n m q a (prodmat m p q b
).End TMatri
es. Fig. 3. Interfa
e of the module Matri
es in Coq

114.3 Modules and Redu
tion BehaviourOur modules implementations have been de
lared as transparent using the <:notation. It means s
ope of redu
tion rules for fun
tions de�ned in a module Aextends to a module B into whi
h the module A is loaded. It was a
tually more
onvenient to do it this way rather than stating ea
h redu
tion rule we may needas a propositional equality in the signature of the module.5 Proofs and Proof Te
hniquesWe do not go through all the lemmas we proved to
omplete this formalisation.Instead we refer the interested reader to the on-line des
ription of the develop-ment:http://www.
se.unsw.edu.au/~nmagaud/Coq/Matri
es/index.htmlWe rather fo
us of some proofs patterns we fa
ed and present some te
hniquesdesigned to make proof development go smoothly.5.1 E�e
tive Indu
tion Prin
iples for Ve
torsIn order to make it easier to reason about ve
tors, we would like to have anindu
tion prin
iple taking into a

ount that one
an only add ve
tors of thesame length. As an example, let us
onsider the following statement:
∀n : nat; v, w : (ve
t A n). (addve
t v w) = (addve
t w v).To prove it, we
an pro
eed by double indu
tion on v and then on w to de
omposethese two ve
tors and then rule out the absurd
ases. It is really
onvenient tofa
torise these steps into a new indu
tion prin
iple:

∀P : ∀n : nat. (ve
t A n) → (ve
t A n) → Prop.
(P O (vnil A) (vnil A)) →
(

∀n : nat; v, v′ : (ve
t A n). (P n v v′) →
∀a, b : A. (P (S n) (v
ons A n a v) (v
ons A n b v′))

)

→

∀n : nat; v, v′ : (ve
t A n). (P n v v′)It makes proofs more readable, with avoiding the
lutter generated by thestraightforward method. The above-mentioned indu
tion prin
iple
an be easilyproven by indu
tion on the length on the ve
tors n; it allows requires to use thetwo basi
 equalities (1) and (2) on ve
tors. As proofs do not only involve twove
tors, we have similar indu
tion prin
iples for three ve
tors (useful for asso-
iativity proofs), and for one single ve
tor (for proofs related to opposite andneutral elements).

125.2 Proof Irrelevan
eSome of the fun
tions we de�ned are partial and therefore have one (or more)pre
ondition(s) as arguments. As a result,
omputations and lemmas statementsrely on proof terms. This
an be annoying as one proof of a given property A
annot be repla
ed by another proof of the same property A. To avoid su
hin
onvenien
e, we de
ide to add as an axiom the prin
iple of proof-irrelevan
e
∀A : Prop.∀p, q : A.p == qto make two proofs of the same statement A
oin
ide whether it is required.Anyway, to avoid trouble related to these matters, we should always uni-versally quantify over proofs of statements needed for partial fun
tions in theirde�nitions. In that way, we only pass variables (denoting proofs) around. Any-way, it is not always possible, espe
ially be
ause fun
tions might generated proofsof weaker properties to pass onto the fun
tions used in their body.5.3 Convenient Notations and Stru
tured EditingThe initial version of this work has been developed using a graphi
al interfa
ePCoq [1℄ for the Coq proof assistant. It provides some graphi
al two-dimensionalnotations and support for stru
tured editing of formula and ta
ti
s sequen
e.Notations PCoq provides user-friendly notations for addition and produ
t ofve
tors and matri
es. It also provides some notations for the identity matrix In.Altogether, it allows us to build a more readable development.

Fig. 4. A snapshot from the PCoq interfa
e
Stru
tured Editing Stru
tured editing was really useful to write dependenttypes of fun
tions and statements of theorems. It was a qui
k way to shu�earguments around to get the right order for the pre
onditions; espe
ially whenproving an equality between two appli
ations of fun
tions whose pre
onditionsare almost but not the same (e.g. 0 < n and 0 ≤ n).Overall, using a ni
e interfa
e like PCoq saved us quite a lot of time whiledeveloping the formalisation.

135.4 Some Remarks about the DevelopmentAltogether this formal des
ription of square matri
es is about 2000 line long. Ittook us about one month to get it up and running. Programming with dependenttypes was a bit tri
ky at �rst, but then it went on quite
omfortably. Proofs tooka bit longer, and on
e we got the right lemmas it was rather pra
ti
able. Thisshows that though it remains really te
hni
al, programming with dependenttypes with obje
ts su
h as matri
es
an be a
hieved in a reasonable amount oftime.6 Extra
tionUsing the extra
tion me
hanism [8℄ provided by Coq, we
an extra
t the
ode wewrote in Coq into ML
ode. Basi
ally, extra
tion will dis
ard the proofs, and onlykeep the
omputational
ontent of fun
tions. In addition, Coq modules will betranslated into OCaml modules. It eventually yields a
erti�ed implementationof matri
es and their operations in O
aml.However extra
tion will not exa
tly yield the programs we would expe
t.Indeed the extra
ted
ode for a fun
tion like addve
t still features an index
n whereas this index is now useless. At the time the data stru
ture ve
t wasextra
ted to O
aml, the index n a
tually stopped being related to the length ofthe ve
tor argument of v
ons. As a
onsequen
e, we would like to get rid of itduring the extra
tion pro
ess.type 'a ve
t =| Coq_vnil| Coq_v
ons of nat * 'a * 'a ve
tlet re
 addve
t n v x : nat ->
oq_A ve
t ->
oq_A ve
t ->
oq_A ve
t =mat
h v with| Coq_vnil -> Coq_vnil| Coq_v
ons (n1, x1, v1) ->(mat
h x with| Coq_vnil -> Coq_vnil| Coq_v
ons (n2, x2, v2) -> Coq_v
ons (n2,(C.
oq_Aplus x1 x2), (addve
t n2 v1 v2)))Fig. 5. After extra
tion, indexes like n are useless variables.Indexes remain in the extra
ted
ode, be
ause they live in nat, a data typewhi
h is de�ned on the
omputational side of Coq rather than the logi
 side.Our idea to solve this issue was to write a dual for nat on the logi
al side of Coq,namely de�ning a new datatype Pnat:Indu
tive Pnat: Prop := PO: Pnat | PS : Pnat -> Pnat.

14This would be a new version of Peano's numbers, erasable at extra
tion time.Unfortunately, it
an not be as easy! In the
ourse of the formal development,we need a proof of disjointness of
onstru
tors for Pnat:
∀n : Pnat,¬PO = (PS n). (3)Be
ause of restri
tions to allowed eliminations of obje
ts of sort Prop (i.e.obje
ts on the logi
 side), this statement is not provable within the Coq system.In addition, in the
urrent state of our formalisation, it
an not be added as anaxiom. Indeed we already use the proof-irrelevan
e prin
iple as a axiom. Andfrom proof irrelevan
e and (3), one
an derive False.An alternative solution is to index ve
tors with �nite sets {1 . . . n} instead ofPeano's integers. In this
ase, we would avoid using pre
onditions to ensure anindex is a
tually within the bounds. Consequently, we would not need the proofirrelevan
e prin
iple and therefore be able to state as an axiom that elements inthe �nite set are distin
t even if this �nite set is de�ned in the sort Prop.7 Dis
ussionIn this paper, we presented a operational formalisation of square matri
es inCoq. This formalisation is part of the
ontributions to the Coq system [10℄. Itshows that one
an reasonably program using dependently typed data stru
tureswithin the Coq proof system. This formalisation is modular and allows havingmatri
es on Z, R, et
. at no extra
ost. We proved all the properties requiredfor the set of square (n, n) matri
es to be a ring. Note that this ring is non
ommutative, therefore there is no opportunity for using Add Ring to deal withequations on matri
es. However it would be interesting to have some sort of Ringta
ti
 available for non-
ommutative rings.There are numerous work what
an be built on top of this formalisationof matri
es; we
an formalise determinants, write programs to solve systems oflinear equations and prove them
orre
t.We
hoose a representation of matri
es whi
h favours lines to
olumns. Thiskind of representation is
lose to what happens in C where two-dimensional ar-rays (like matri
es) are stored row by row. However, in Fortran, two-dimensionalarrays are stored
olumn by
olumn making it easier to a

ess a
olumn that aline (for a line one has to
ross the whole matrix to retrieve the
omponents).Other representations su
h as blo
k matri
es, s
ar
e matri
es are widely used.It would be interested to experiment how tools [11, 9℄ we already produ
ed tomake
hanging representation of datatypes easier in Coq
an be adapted to beused with dependently typed data stru
tures.Referen
es1. A. Amerkad, Y. Bertot, L. Pottier, and L. Rideau. Mathemati
s and Proof Pre-sentation in P
oq. In Proof Transformations, Proof Presentations and Complexityof Proofs (PTP'01), 2001. Sienna, Italy, also available as INRIA RR-4313.

152. L. Augustsson. Cayenne - a language with dependent types. In InternationalConferen
e on Fun
tional Programming, pages 239�250, 1998.3. Y. Bertot and P. Casteran. Intera
tive Theorem Proving and Program DevelopmentCoq'Art: The Cal
ulus of Indu
tive Constru
tions. Texts in Theoreti
al ComputerS
ien
e. An EATCS Series. Springer-Verlag, 2004.4. J. Chrz¡sz
z. Implementing Modules in the Coq System. In TPHOLs'2003, Roma,Italy, volume 2758, pages 271�286. LNCS, Springer-Verlag, 2003.5. Coq development team, INRIA and LRI. The Coq Proof Assistant Referen
e Man-ual, Apr 2004. Version 8.0.6. Epigram Team. Epigram, 2004. http://www.dur.a
.uk/CARG/epigram/.7. LAPACK. LAPACK � Linear Algebra PACKage, 1999.http://www.netlib.org/lapa
k/.8. Pierre Letouzey. A New Extra
tion for Coq. In Herman Geuvers and FreekWiedijk,editors, Types for Proofs and Programs, Se
ond International Workshop, TYPES2002, Berg en Dal, The Netherlands, April 24-28, 2002, volume 2646 of Le
tureNotes in Computer S
ien
e. Springer-Verlag, 2003.9. N. Magaud. Changing Data Representation within the Coq System. InTPHOLs'2003, Roma, Italy, volume 2758, pages 87�102. LNCS, Springer-Verlag,2003.10. N. Magaud. Ring Properties for Square Matri
es, 2003. Contribution to the Coqsystem: http://
oq.inria.fr/
ontribs-eng.html.11. N. Magaud and Y. Bertot. Changing Data Stru
tures in Type Theory:A Study ofNatural Numbers. In P. Callaghan, Z. Luo, J. M
Kinna, and R. Polla
k, editors,International Workshop on Types for Proofs and Programs (TYPES'2000), volume2277 of Le
ture Notes in Computer S
ien
e, pages 181�196. Springer-Verlag, 2000.12. C. M
Bride and J. M
Kinna. The View from the Left. Journal of Fun
tionalProgramming, 14:1�43, 2004.13. Christine Paulin-Mohring. Indu
tive de�nitions in the system
oq: Rules and prop-erties. In Mark Bezem and Jan-Friso Groote, editors, Typed Lambda Cal
uli andAppli
ations, volume 664 of LNCS, pages 328�345. Springer-Verlag, Mar
h 1993.14. L. Pottier. Basi
s notions of algebra., 1999. Contribution to the Coq system:http://
oq.inria.fr/
ontribs-eng.html.15. J. Stein. Linear algebra, 2003. Contribution to the Coq system:http://
oq.inria.fr/
ontribs-eng.html.16. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-versity Press, 2003.17. H. Xi and F. Pfenning. Dependent types in pra
ti
al programming. In POPL'99:The 26th ACM SIGPLAN-SIGACT Symposium on Prin
iples of ProgrammingLanguages, San Antonio, Texas, pages 214�227, New York, NY, 1999.

