
HAL Id: hal-00955580
https://inria.hal.science/hal-00955580

Submitted on 4 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

gEMpicker: a highly parallel GPU-accelerated particle
picking tool for cryo-electron microscopy

Thai Hoang, Xavier Cavin, Patrick Schultz, David Ritchie

To cite this version:
Thai Hoang, Xavier Cavin, Patrick Schultz, David Ritchie. gEMpicker: a highly parallel GPU-
accelerated particle picking tool for cryo-electron microscopy. BMC Structural Biology, 2013, 13 (1),
pp.25. �10.1186/1472-6807-13-25�. �hal-00955580�

https://inria.hal.science/hal-00955580
https://hal.archives-ouvertes.fr

Hoang et al. BMC Structural Biology 2013, 13:25

http://www.biomedcentral.com/1472-6807/13/25

SOFTWARE Open Access

gEMpicker: a highly parallel GPU-accelerated
particle picking tool for cryo-electron
microscopy
Thai V Hoang1*, Xavier Cavin1, Patrick Schultz2 and David W Ritchie1

Abstract

Background: Picking images of particles in cryo-electron micrographs is an important step in solving the 3D

structures of large macromolecular assemblies. However, in order to achieve sub-nanometre resolution it is often

necessary to capture and process many thousands or even several millions of 2D particle images. Thus, a

computational bottleneck in reaching high resolution is the accurate and automatic picking of particles from raw

cryo-electron micrographs.

Results: We have developed “gEMpicker”, a highly parallel correlation-based particle picking tool. To our knowledge,

gEMpicker is the first particle picking program to use multiple graphics processor units (GPUs) to accelerate the

calculation. When tested on the publicly available keyhole limpet hemocyanin dataset, we find that gEMpicker gives

similar results to the FindEM program. However, compared to calculating correlations on one core of a contemporary

central processor unit (CPU), running gEMpicker on a modern GPU gives a speed-up of about 27×. To achieve even

higher processing speeds, the basic correlation calculations are accelerated considerably by using a hierarchy of

parallel programming techniques to distribute the calculation over multiple GPUs and CPU cores attached to multiple

nodes of a computer cluster. By using a theoretically optimal reduction algorithm to collect and combine the cluster

calculation results, the speed of the overall calculation scales almost linearly with the number of cluster nodes available.

Conclusions: The very high picking throughput that is now possible using GPU-powered workstations or computer

clusters will help experimentalists to achieve higher resolution 3D reconstructions more rapidly than before.

Keywords: Cryo-EM particle picking, Graphics processor units, Normalised cross-correlation, Fast Fourier transform,

Parallel computing, Tree-based reduction

Background
Despite recent advances in the use of computational

techniques, solving the structures of large macromolec-

ular complexes by cryo-electron microscopy (EM) is still

a painstaking and labour-intensive task [1]. It is also

a very computationally intensive task. In single-particle

cryo-EM, large numbers of micrographs containing low-

resolution and noisy two-dimensional (2D) images of the

particle of interest are recorded. Because eachmicrograph

usually containsmultiple particles inmultiple random ori-

entations, and possibly also in various conformations, the

*Correspondence: VanThai.Hoang@inria.fr
1Inria Nancy - Grand Est, 615 rue du Jardin Botanique, 54600 Villers-lès-Nancy,

France

Full list of author information is available at the end of the article

particles are then picked and classified into groups having

similar orientations. Fast Fourier transform (FFT) decon-

volution and averaging techniques may then be applied

to reduce both systematic deformations of the 2D images

due to the instrument’s contrast transfer function and the

random noise which arises from using low electron inten-

sities necessary to preserve the structural integrity of the

samples. Once a good set of 2D images has been obtained,

a three-dimensional (3D) electron density map of the par-

ticle may be constructed using 3D back-projection or

Radon transform techniques [2], for example. However,

the resolution of such maps, which are often calculated

from only O(104) molecular images, is low compared to

density maps obtained by X-ray crystallography which are

typically derived from O(1015) molecules. Therefore, in

© 2013 Hoang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Hoang et al. BMC Structural Biology 2013, 13:25 Page 2 of 10

http://www.biomedcentral.com/1472-6807/13/25

cryo-EM, the main way to increase the resolution of the

final density map is to capture and process many thou-

sands or even several millions of 2D particle images. In

the past, the particles in EM micrographs were picked

manually, but this is not practical to reach sub-nanometre

resolution or to resolve conformational changes within

molecules. Modern digitial imaging technology combined

with automated high-throughput data collection tech-

niques now allow both higher resolution and unlimited

sizes of 2D datasets to be captured. Hence, a major bottle-

neck in reaching atomic resolution in 3D reconstruction

by cryo-EM is now the accurate and automated picking of

particles from the raw EMmicrographs.

Many methods have been proposed for automatic cryo-

EM particle picking [3,4]. Amongst the most popular

are those that use particle templates to facilitate particle

recognition. A template is usually a noise-free represen-

tation of the particle in a particular orientation. It can

be obtained either by projecting a known 3D structure

onto a 2D plane or by calculating the average of some

representative particles selected from micrographs. Some

picking methods use mathematical functions for tem-

plates such as the difference of Gaussians method [5,6].

In general, template-based methods recognise particles

by computing similarity scores between the template and

similar sized regions of each micrograph. For example,

a widely used template-based method employs the nor-

malised cross-correlation technique [7] which calculates

an array of matching scores in the form of a 2D correlation

map. This approach has been implemented in FindEM [8],

SPIDER LFCPick [9], and SIGNATURE [10], for example.

Some pickingmethods usemachine learning techniques

to discriminate between real particles and non-particles

such as those due to contaminants and noise. Example

techniques are cascades of classifiers [11,12], pyramid of

neural networks [13], and support vector machine [14].

Other methods are based on the observation that 2D

images of particles often have rather limited geometric

complexity. For example, [15] use a Hough transform for

particle edge detection. A related approach uses image

processing techniques to segment particles directly from

micrographs [16]. However, methods which do not use

templates often require human intervention during the

picking process.

Because it is difficult to surpass the accuracy of auto-

matic template-based methods when the templates match

the particles well, template-based approaches are often

preferred although their computational cost is often

higher than that of other methods [4]. However, in single

particle cryo-EM, large and diverse sets of both micro-

graphs and templates are usually needed to represent and

identify different orientations of particles in micrographs

in order to achieve a high resolution 3D reconstruction.

There is therefore a need to be able to pickmultiple images

from multiple micrographs using multiple templates as

rapidly as possible. In order to help satisfy this need, we

have developed a highly parallel correlation-based parti-

cle picking tool called gEMpicker, which exploits recent

advances in high performance computing technology in

order to distribute particle picking calculations over mul-

tiple nodes of a computer cluster.

Nowadays, most research institutions have at least one

computer cluster for scientific calculations. Each node

of the cluster usually consists of several CPU cores, and

an increasing number of clusters are configured with a

certain number of GPUs in order to accelerate arithmeti-

cally intense calculations. Indeed, in the last few years,

GPUs have been used to accelerate many scientific cal-

culations [17] in fields ranging from molecular dynamics

simulations [18] and quantum chemistry [19] to protein

and DNA sequence alignment [20] and protein docking

[21]. Recently, GPUs have also been used to accelerate

single particle reconstruction [22], tomographic recon-

struction [23], and subtomogram averaging [24]. With

these observations in mind, we designed gEMpicker to

be able to adapt easily to different hardware configura-

tions, ranging from a modest workstation with one or two

attached GPUs to large CPU-based or GPU-based clus-

ters with tens or even hundreds of processors, and we have

endeavoured to ensure that its performance increases lin-

early with the computational resources available. Here, we

present particle picking speed-up results obtained on four

different computational platforms, and we demonstrate

the practical utility of the approach using the publicly

available keyhole limpet hemocyanin (KLH) dataset. To

our knowledge, gEMpicker is the first particle picking pro-

gram to use multiple modern graphics processor units

(GPUs) to accelerate FFT-based NCC calculations.

Implementation
NCC-based automatic particle picking
Given a set of search images, Sk (k = 1, 2, . . . ,N),

each of which contains a candidate particle to be picked,

NCC-based automatic particle picking involves determin-

ing the highest peaks in the correlation maps calculated

between these search images and the target image. The

overall calculation involves essentially three main steps.

The first step calculates the correlation, NCCk , between

each Sk and the target image. NCCk can be efficiently cal-

culated using FFTs by exploiting the formulation in [7]

(Additional file 1 Section 1). The second step combines

all of the NCCk correlation maps into a global correlation

map NCC using

NCC(v) = max
k

NCCk(v) (1)

for all relative distance v of search images to the origin

of target image. In the parallel processing community, the

Hoang et al. BMC Structural Biology 2013, 13:25 Page 3 of 10

http://www.biomedcentral.com/1472-6807/13/25

process of gathering results in this way is often called a

“reduction” because it reduces multiple result arrays into

a single global result array. In large-scale distributed cal-

culations, the efficiency of the reduction step can have a

significant impact on the overall speed of the calculation.

We return to this point below.

In addition to the global correlation map, it is also nec-

essary to store the identity of the search image that gives

rise to each local maximum. Hence, a global index map,

IND, is calculated along with the global NCC according to

IND(v) = argmax
k

NCCk(v). (2)

Assuming that v is the location of a local maximum in

NCC, the search image that corresponds to that local

maximum is given by k = IND(v). In other words, the

calculation has associated the search image Sk=IND(v) at

location v of the target image. Lastly, the third step locates

the coordinates of local maxima in NCC in order to pro-

duce a final list of picked particles. The above procedure

is then repeated for each target image in the dataset.

FFT size and zero-padding
Because almost all of the computational cost in gEMpicker

arises from FFT-based NCC calculations, the choice of

FFT library can significantly affect overall performance.

We therefore tested gEMpicker using the proprietary

MKL (Math Kernel Library) [25], CUFFT (CUDA Fast

Fourier Transform) [26], and the open source FFTW

(Fastest Fourier Transform in the West) [27] libraries.

Although the theoretical advantage of the FFT is that it

can perform a calculation that apparently requires O(N2)

operations in just O(N logN) time, the actual speed-

up that might be achieved can be quite sensitive to the

dimension N.

Current FFT libraries use the Cooley–Tukey algorithm

[28] to reduce recursively a transform of sizeN into trans-

forms of smaller dimensions which are normally imple-

mented as small “kernels” of dimension 2, 3, 5, or 7. If the

dimension cannot be factored into small prime numbers,

a slower general purpose algorithm is used (e.g. [29,30]).

Therefore, if the image dimension is not a natural product

of small primes, it is often worthwhile to pad the image

with zeros up to a suitable larger dimension. Additionally,

on current GPUs, global GPU memory can be accessed

most efficiently if memory request can be factored into

similar dimensions, because this can allow the GPU to

coalesce multiple memory accesses into a single transac-

tion (the precise conditions necessary for coalesced mem-

ory access are described in the CUDA C Programming

Guide [31]). Consequently, gEMpicker automatically zero-

pads images when it detects an opportunity to improve

performance due to the above considerations. This simple

trick has demonstrated its effectiveness when the data size

does not conform to the library’s recommendation.

Parallel processing framework
In parallel processing, it is usual to use the notion of a

“thread” to mean one instance of a calculation that will

run essentially independently on one CPU core. Often,

multiple threads are launched from a single parent pro-

gram, or “process”, on each CPU node. Although different

threads may run independently, they often still commu-

nicate with each other in a controlled way using one or

more message passing techniques to send and receive

data and results. Here, we consider the basic unit of cal-

culation to be the correlation of one template with one

micrograph because this operation is relatively expensive

yet it does not depend on either the number of micro-

graphs or the number of templates to be processed. With

this level of granularity, the particle picking problem can

be parallelised quite naturally by distributing the correla-

tion calculations over several threads running in parallel.

When GPUs are available, it is legitimate for a CPU thread

to pass a part or even all of a calculation to an attached

GPU.

When running in multi-threaded mode, each thread

will calculate the correlation between the micrograph and

multiple templates. However, concurrent reading of data

by multiple threads could cause contention in the disc

storage device and consequently lead to sub-optimal per-

formance. Therefore, to avoid this problem, gEMpicker

adopts a producer–consumer pattern [32]. The producer’s

job is simply to read data from disc, and copy it into a

queue. If the number of producers is one, which is the

case in gEMpicker, there is only one stream of data from

the storage device, and hence the possibility of contention

is completely avoided. gEMpicker normally uses multi-

ple consumer threads according to a simple thread pool

pattern [33]. Each consumer removes one template at a

time from the queue and processes it independently of

any other template calculations. In order to avoid race or

deadlock conditions amongst the threads, access to the

queue is controlled by locks within the “Boost.Thread”

library [34]. Additionally, if the queue becomes empty, any

idle consumer threads will sleep until more data is made

available by the producer. On the other hand, if the queue

grows beyond a certain size, the producer will sleep in

order to avoid exhausting physical memory. The number

of consumer threads in the pool can be adapted according

to the available resources. Typically, the number of threads

would be set to the number of CPU cores or the number of

GPUs per node. Thus, the producer-consumermodel pro-

vides a way to read data smoothly from disc and to process

it as quickly as possible.

In order to calculate the global NCC map for a micro-

graph with a set of templates, gEMpicker distributes the

Hoang et al. BMC Structural Biology 2013, 13:25 Page 4 of 10

http://www.biomedcentral.com/1472-6807/13/25

calculation over a given number of threads, which might

ultimately be executed onmultiple CPUs, GPUs, or a mix-

ture of the two. Thus each thread t calculates NCCt for a

subset of the templates and it maintains NCCt and INDt

as its individual correlation map and the correspond-

ing index map. When the queue of templates becomes

exhausted, each thread combines its NCCt with NCCp

so that NCCp and INDp will contain the candidate picks

calculated by the threads belonging to process p. When

running on a single workstation, NCCp and INDp will

immediately describe all of the picked particles, and all

that remains is to identify the local maxima to obtain the

final picked list.

Cluster implementation
When running on a computer cluster, gEMpicker par-

allelises the overall calculation by distributing the work

to nodes in the cluster using the MPI (Message Passing

Interface) library [35]. At this level of parallelisation,

gEMpicker assumes that each node in the cluster has

the same hardware configuration so that if the work is

divided equally, the main process on each node will fin-

ish at approximately the same time. gEMpicker distributes

threads to nodes on either a per-micrograph or per-

template basis according to the hardware configuration

and the actual number of micrographs and templates to be

compared. In the per-micrograph scheme, the correlation

and index maps for each micrograph are computed by a

single node for all templates. Conversely, in per-template

mode, all nodes will collaboratively compare all templates

with each micrograph. Assuming many templates need to

be processed, this mode should be more efficient when

the number of CPU cores exceeds the number of micro-

graphs to be processed. However, in order to achieve this

gain, the thread-level correlation and index maps need to

be collected and combined efficiently. Thus, cluster cal-

culations require an additional reduction step to combine

the correlation and index maps from all processes in order

to obtain the global NCC map and global IND map using

Equations (1) and (2). Figure 1 illustrates the hierarchical

parallel structure of gEMpicker running in a multi-node

cluster.

We have implemented both direct and tree-based

reduction algorithms in gEMpicker. The direct reduction

algorithm uses the MPI_Send and MPI_Recv functions

to send and receive data between the node and mas-

ter processes. For a cluster of 2n nodes, this approach

requires 2n-1 data transfers and 2n-1 reduce operations.

The tree-structured reduction uses theMPI_Reduce func-

tion to propagate results towards the master process at

the root of the tree and requires only n data transfers

and n reduce operations in a cluster of 2n nodes. Such

a tree-based approach is theoretically optimal, since the

total elapsed time should scale only logarithmically in

the number of cluster nodes. It is worth noting that the

cluster reduction step is performed only when all node-

level processes have finished their correlation tasks. This

means that the reduction calculation itself may be acceler-

ated using multi-threading on each node’s main process.

Because this step mainly involves element-wise process-

ing of large arrays it is easily parallelised using a few

fine-grained OpenMP [36] compiler directives.

The computational platforms
In this study, computational experiments were carried

out using four different computational platforms, repre-

senting four possible hardware configurations. Dirac is a

high performance workstation equipped with a contem-

porary GPU, Mbiserv is a modern GPU server (4 GPUs),

Adonis is a small GPU cluster (8 CPU nodes, 16 GPUs),

and Griffon is a medium-sized CPU cluster (64 CPU

nodes). Dirac, Adonis, and Griffon all have pairs of quad-

core CPUs, whereas Mbiserv has two hex-core CPUs. We

included Mbiserv in our experiments because it was the

only machine available to us which is directly connected

to four GPUs. Further details of these machines are given

in Table 1. Although gEMpicker uses essentially the same

code on all platforms, some of the compiler directives will

necessarily differ when compiling it for a CPU or GPU

cluster. For academic use, binary versions of gEMpicker

are available from the authors on request.

Results and discussion
FFT-based NCC performance comparison
Figure 2 compares the relative computational speed of

2D NCC calculations using FFTW, MKL, and CUFFT for

a range of micrograph sizes using both single and dou-

ble precision calculations. This figure shows that while

MKL is always somewhat faster than FFTW, the speed-up

obtained by performing the calculation on a GPU is quite

dramatic, especially for large micrographs. For example,

for a micrograph of size 4096×4096 and a template image

of size 160 × 160, using CUFFT gives ∼ 47× speed-up

for single precision data and ∼ 30× speed-up for dou-

ble precision data. Thanks to recent advances in imaging

technology, it is currently common to have digital micro-

graphs of size 2048×2048 or 4096×4096, and the coming

generations of EM imaging devices promise to produce

even larger sizes. This suggests that the use of GPUs for

NCC-based particle picking could be even more advan-

tageous in the near future when even larger micrographs

become available. Because it seems that single precision

FFT calculations are sufficiently accurate for NCC-based

particle picking (see Section Case study: keyhole limpet

hemocyanin), all subsequent results will be reported only

for single precision calculations.

To evaluate the multi-threading performance in gEM-

picker, the global single precision correlation map

Hoang et al. BMC Structural Biology 2013, 13:25 Page 5 of 10

http://www.biomedcentral.com/1472-6807/13/25

distribute templates

Thread

manager

Thread 1

(CPU)

Thread 2

(CPU)

Thread T

(GPU)

combine correlation/index maps

Process 1

distribute templates

Thread

manager

Thread 1

(CPU)

Thread 2

(CPU)

Thread T

(GPU)

Process 2

distribute templates

Thread

manager

Thread 1

(CPU)

Thread 2

(CPU)

Thread T

(GPU)

Process P

MPI reduction + OpenMP

Start
MPI task distribution

End

combine correlation/index maps combine correlation/index maps

Figure 1 The hierarchical parallel structure of gEMpicker. At the top level of the hierarchy, the MPI parallel processing library is used to

distribute the calculation over multiple processes on the nodes of a CPU or GPU cluster. On each node, the Boost.Thread library is used to

synchronise multiple coarse-grained CPU threads which cooperate using the producer-consumer programming model. During the reduction step,

fine-grained parallelisation using OpenMP is used to combine the process-level correlation maps from the CPU nodes, and the MPI_Reduce

function is used to propagate the results in parallel towards the master node.

between 14,630 template images of size 160 × 160 and

a micrograph of size 4096 × 4096 was calculated on

our Dirac (8-core workstation) and Mbiserv (four-GPU

server) machines (see Table 1 for details). The total num-

ber of forward and inverse FFTs performed in this case

is 73152. The total computation time was ∼7,415s on

Dirac and just ∼160s on Mbiserv. This corresponds to an

average rate of 0.25 templates/CPU-core/s and 22.9 tem-

plates/GPU/s, respectively. Figure 3a shows the relative

speed-up for these calculations when using different num-

bers of CPU cores. This figure shows that the speed-up

is almost linear for the first four CPU cores (speed-

up ∼3.5×), but that using further cores gives an increas-

ingly smaller gain, and using all 8 cores of a dual quad-core

machine gives a speed-up of only about 5.5×. This effect

is presumably due to the operating system overhead of

scheduling multiple threads and their independent mem-

ory access patterns on a pair of fully loaded quad-core

CPUs. On the other hand, Figure 3b shows that when

using up to four GPUs, the speed-up increases linearly

with the number of GPUs with apparently no loss of

performance as the number of GPUs increases.

Multi-node cluster performance
Figure 4 shows the speed-up factor obtained when per-

forming the above calculation (i.e. calculating the 2D

single precision correlation maps between a micrograph

of size 4096 × 4096 and 14,630 template images of size

160 × 160) on the Griffon and Adonis computer clusters

using the per-template mode. In this experiment, only the

process correlation maps, NCCp, not the cluster’s global

correlation map NCC, were calculated because the latter

involves the reduction step, which is considered separately

below. Here, the number of consumer threads in each

process is equal to the number of CPU cores per node

(Figure 4a) or the number of GPUs per node (Figure 4b).

Figure 4 shows that the gain increases almost linearly with

the number of nodes when clusters have a relatively small

size, such as in Adonis. The sub-theoretical gain in Grif-

fon may be due to the use of a network file system to store

all template images in a single storage device. Since each

node has a producer thread to read template images for

its consumer threads, this could lead to contention on the

disc device, as discussed above. Nevertheless, the results

in Figure 4b also show that the performance of gEMpicker

Table 1 The characteristics of the four computer platforms used in the current study

Machine CPU CPU Memory GPUs GPU Infiniband
name cores type (node) (total) type connection

Dirac 8 i7-965 (3.2GHz) 12Gb 1 C2075 (575MHz, 448 cores) –

Mbiserv 12 X5690 (3.5GHz) 64Gb 4 C2075 (575MHz, 448 cores) –

Adonis 8 × 8 E5520 (2.3GHz) 24Gb 16 C1060 (602MHz, 240 cores) 40GB/s

Griffon 64 × 8 L5420 (2.5GHz) 16Gb 0 – 20GB/s

Hoang et al. BMC Structural Biology 2013, 13:25 Page 6 of 10

http://www.biomedcentral.com/1472-6807/13/25

128 256 512 1024 2048 4096
0

10

20

30

40

50

N (image size N × N) N (image size N × N)

C
o
m

p
u
ta

ti
o
n
a
l
g
a
in

FFTW

MKL

CUFFT

(a) Single-precision data

128 256 512 1024 2048 4096
0

5

10

15

20

25

30

C
o
m

p
u
ta

ti
o
n
a
l
g
a
in

FFTW

MKL

CUFFT

(b) Double-precision data

Figure 2 Comparison of the relative speed of 2D FFT NCC single-precision (a) and double-precision (b) calculations at different
micrograph sizesN × N (pixels) using the MKL, FFTW libraries on one CPU core of our Dirac workstation (3.2GHz i7-965) and the CUFFT
library on one C2075 GPU (448 cores). The size of template images are chosen as N/8 × N/8. All timings are normalised to the FFTW (one unit).

scales linearly with the number of GPUs and the number

of nodes in a GPU cluster.

The performance of gEMpicker’s reduction algorithms

in the above calculations on the Griffon and Adonis clus-

ters is shown in Figure 5. It can be seen that the total

reduction time increases linearly with the number of

nodes in direct reduction (MPI_Send/MPI_Recv) and log-

arithmically with the number of nodes in the tree-based

reduction (MPI_Reduce). These observations agree with

the expected theoretical performance of these algorithms.

Additionally, it can also be seen that using OpenMP to

parallelise the reduction inside each process gives a fur-

ther speed improvement. In particular, this improvement

is significantly greater for Adonis (Figure 5b) than Griffon

(Figure 5a). This difference can be explained by the higher

interconnect speed in the Adonis cluster, which reduces

data transfer times and thus exposes the benefit of using

OpenMP to accelerate the reduction calculation on each

node.

Case study: keyhole limpet hemocyanin
This section demonstrates the practical utility of gEM-

picker using the publicly available keyhole limpet hemo-

cyanin (KLH) dataseta. This annotated dataset was used

previously to assess the performance of several automatic

particle picking algorithms in a particle picking “bake-

off” experiment [4]. This relatively small dataset consists

of 82 defocus pairs of high-magnification images of size

2048 × 2048 of KLH particles, the locations of 1042

side-view particles picked manually by a human expert

(Mouche’s picks), and a preliminary 3D reconstruction.

Each defocus pair contains an image acquired at near-to-

focus conditions and an image acquired at far-from-focus

conditions.

KLH is a homo-oligomeric didecamer with D5 point

group symmetry [37] and exists in two isoforms, KLH1

and KLH2. KLH1 has a short cylindrical shape whereas

KLH2, which is usually an aggregate of KLH1, has a

longer shape. Since the KLH1 particles usually appear as

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

threads (cores)

C
o
m

p
u
ta

ti
o
n
a
l
g
a
in

(a) Multi-cores

1 2 3 4
0

1

2

3

4

threads (GPUs)

C
o
m

p
u
ta

ti
o
n
a
l
g
a
in

(b) Multi-GPUs

Figure 3 The speed-up obtained by using multi-threading to calculate 14,630 2D single-precision NCCs of size 4096 × 4096 on (a) a dual
quad-core workstation (Dirac), and (b) a four-GPU server (Mbiserv). See Table 1 for hardware details.

Hoang et al. BMC Structural Biology 2013, 13:25 Page 7 of 10

http://www.biomedcentral.com/1472-6807/13/25

1 2 4 8 16 32 64
0

8

16

24

32

40

48

56

64

processes (nodes)

C
o
m

p
u
ta

ti
o
n
a
l
g
a
in

(a) Multi-node CPU cluster

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

processes (nodes)

C
o
m

p
u
ta

ti
o
n
a
l
g
a
in

1 GPU / process

2 GPU / process

(b) Multi-node GPU cluster

Figure 4 The speed-up obtained when using (a) a 64-node CPU cluster and (b) an 8-node GPU cluster to calculate 14,630 2D
single-precision NCCs of size 4096 × 4096. Here, the number of threads in each process is equal to the number of CPU cores per node in (a), and

the number of GPUs per node in (b).

rectangular side-views with a five-fold axis in the image

plane, and as circular top-views with the five-fold axis

perpendicular to the image plane, most of the particles

in the micrographs may be associated with projections

of KLH that correspond to these two views. Thus, the

set of templates used in our experiment is generated by

projecting the provided preliminary 3D reconstruction in

two orientations to produce one side-view and one top-

view template (shown in Figures 6b and 6d) using EMAN2

[38] and then rotating the two projections through 360°

in 4° intervals to produce a total of 180 images in the

template set. For the masks, one rectangular and one cir-

cular mask that match the two initial projections (shown

in Figures 6b and 6d) were created manually. These masks

were then rotated through 360° in steps of 4° to make the

corresponding masks for the rotated templates. It should

be noted that even though we could benefit the KLH’s

symmetry property to effectively reduce the number of

templates and masks to 46 without much performance

loss, we keep using 180 templates and masks to facilitate

comparison with the existing benchmark [8].

In order to suppress intensity variations due to noise,

the micrographs of the KLH dataset were convoluted

with a 4 × 4 averaging filter. Each filtered micrograph

was then correlated with each of the 180 templates using

the algorithm in gEMpicker. The final correlation map

for each micrograph contains the global maximum cor-

relation scores for the 180 templates. Finally, gEMpicker

extracts the peaks from the resulting 82 global maps using

a procedure similar to that of FindEM [8] to identify

the template that appears at each peak location. As an

example, Figure 7 shows two global correlation maps of

a far-from-focus micrograph from the KLH dataset using

side-view and top-view templates separately. In these

maps, gEMpicker calls a picked particle whenever a local

minima of such a map (here, negative values) falls below

2 4 8 16 32 64
0

2.5

5.0

7.5

10.0

12.5

15.0

processes (nodes)

R
e
d
u
c
ti
o
n
 t
im

e
 (

s
)

MPI_Reduce+OpenMP

MPI_Reduce

MPI_Send−MPI_Recv+OpenMP

MPI_Send−MPI_Recv

(a) Multi-node CPU cluster

2 4 8
0

0.25

0.50

0.75

1.00

1.25

1.50

processes (nodes)

R
e
d
u
c
ti
o
n
 t
im

e
 (

s
)

MPI_Reduce+OpenMP

MPI_Reduce

MPI_Send−MPI_Recv+OpenMP

MPI_Send−MPI_Recv

(b) Multi-node GPU cluster

Figure 5 The reduction time on (a) Griffon (64-node cluster, 20Gb/s InfiniBand), and (b) Adonis (8-node GPU cluster, 40Gb/s InfiniBand)
using different inter-process communication strategies (i.e. the MPI_Reduce or MPI_Send andMPI_Recv functions), and different
methods for calculating the reduce operation on each node (i.e. with or without using OpenMP parallelisation). Note that the time axis in

(b) is 10× smaller than in (a).

Hoang et al. BMC Structural Biology 2013, 13:25 Page 8 of 10

http://www.biomedcentral.com/1472-6807/13/25

(a) Side-view template (b) Side-view mask (c) Top-view template (d) Top-view mask

Figure 6 The templates andmasks used in the experiment. (a) and (c): the side-view and top-view templates obtained by projecting a

preliminary 3D density map. (b) and (d): the corresponding masks for the two templates used during the NCC calculation.

a certain threshold (-0.3 in this case, similar to the value

used in [8]). It is worth noting that a receiver-operator-

characteristic (ROC) analysis (see Figure 8) of the results

shows that for the KLH dataset using a template rotation

step size of 9° gives almost the same level of picking perfor-

mance as 4°. Thus, correspondingly faster picking speeds

may actually be achieved in practice.

We then used gEMpicker to pick particles from the 82

far-from-focus micrographs in the KLH dataset. This gave

1249 side-view particles, which contain 979 (i.e. ∼94%) of

Mouche’s 1042 manually picked particles. In comparison,

FindEM, which uses Roseman’s NCC algorithm, picked

1282 side-view particles containing 1011 (i.e. ∼97%)

of the manually picked particles. Thus, gEMpicker picked

approximately 3% fewer particles than FindEM from

3% fewer attempts. The small difference in the results

between gEMpicker and FindEM is due to the different

templates and masks used here and the slightly different

parameter settings in the final peak extraction proce-

dure. As noted by [4], different human experts can pick

different sets of particles, and so it is rather difficult

to define a “gold standard” for particle picking. There-

fore, although FindEM gave amongst the best results in

the bake-off comparison, we would not wish to claim

that gEMpicker is superior to FindEM. In addition, since

the dataset does not provide the coordinates of manu-

ally picked top-view particles, we cannot apply a sim-

ilar performance comparison for the top-view picking

results of gEMpicker. To obtain an independent valida-

tion of our results, we uploaded the picks obtained by

gEMpicker to the 3D Electron Microscopy Benchmark

(http://i2pc.cnb.csic.es/3dembenchmark/) for 50 KLH

micrographs. This generated the following statistics: Pre-

cision: 78.8%; Recall: 93.6%; False Discovery Rate: 21.2%;

F-measure: 85.6%; Average distance frommanual pick: 4.7

pixels.

Regarding timing, the total time to compute the corre-

lation maps for the 82 micrographs in this dataset was

5,972s when using one CPU core on Dirac compared

to 223s using one C2075 GPU. This corresponds to a

GPU/CPU speed-up factor of∼27. However, in this case it

is probably fairer to compare one GPUwith one quad-core

CPU, which reduces the speed-up factor to∼9. Effectively,

the 82 micrographs in this small dataset may be processed

in less than 4 minutes using a single GPU or in just over

28 minutes using all 8 cores of a modern workstation.

A higher speed-up is expected using a greater number

of templates. In contrast, the FindEM program requires

9,430s to compute the 82 correlation maps using one CPU

core on Dirac. Thus, the speed-up obtained by using one

(a) A far-from-focus

micrograph

−0.5

−0.25

0

0.25

(b) Using side-view

templates

−0.6

−0.3

0

(c) Using top-view

templates

Figure 7 An example far-from-focus micrograph from the KLH dataset (a), and the calculated global correlation map showing the picked
side-view and top-view templates, (b) and (c), which are shown separately for clarity. The higher peaks (negative values in this case) in the

correlation maps correspond to the location of particles. Note that while the side-view templates form rings of relatively high correlation around

top-view particles in (b), higher correlation at the centres of these rings are obtained when correlating with top-view templates (c).

http://i2pc.cnb.csic.es/3dembenchmark/

Hoang et al. BMC Structural Biology 2013, 13:25 Page 9 of 10

http://www.biomedcentral.com/1472-6807/13/25

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Figure 8 Receiver-operator-characteristic plot comparison of
gEMpicker’s picking performance on the KLH dataset. Here, the
top-scoring 2084 picks from gEMpicker are classified as true or false

positives using the 1042 side-view particles manually picked by

Mouche (see main text for further details).

C2075 GPU in gEMpicker when compared to FindEM

is ∼ 42×.

Assuming the almost linear speed-up demonstrated by

our cluster calculations (Figure 5), we estimated that the

entire KLH picking exercise could be completed in about

1 minute on our 4-GPU Mbiserv machine. However, the

actual observed time is almost 3 minutes. This is because

for micrographs of size 2048 × 2048, the time required to

process four templates in four GPUs is less than the time

required to read four templates from the storage device.

Hence the consumer threads often have to wait for data to

become available. In addition, using multi-threading leads

to the additional overhead of combining results at the final

step. Similar phenomena are also observed on the Adonis

andGriffon clusters. Thus, by exploiting GPUs for the par-

ticle picking problem, the rate-limiting factor is no longer

raw computing power but the bandwidth of the hard disk

drives.

Conclusions
We have presented gEMpicker, a highly parallel multi-

threaded cryo-EM particle picking tool which implements

Roseman’s NCC matching algorithm on multi-CPU and

multi-GPU computer systems. Our results on picking

particles in the KLH dataset indicate that gEMpicker per-

forms at least as well as Roseman’s FindEM algorithm.Our

computational experiments show that gEMpicker’s auto-

matic particle picking calculation is approximately 30–40

times faster on a contemporary GPU than on a single

CPU core. Compared to a quad-core CPU running four

gEMpicker threads in parallel, the speed-up from using

one contemporary GPU is a factor of ∼ 9×. We have

shown that increasing the number of GPUs speeds up the

calculation linearly with almost no additional overhead.

We have also demonstrated how the picking task may

be distributed over multiple nodes in a computer cluster.

On a cluster with a fast Infiniband connection, our tree-

based reduction algorithm for combining node-level picks

almost eliminates the overhead of distributing the calcu-

lation over multiple nodes, and allows the overall calcu-

lation speed to increase almost linearly with the available

hardware. Thus, the very high picking throughput that

is now possible with gEMpicker will help experimental-

ists to achieve higher resolution 3D reconstructions more

rapidly than before.

Availability and requirements
Project name: gEMpicker

Project homepage: http://gem.loria.fr/gEMpicker.html

Operating system(s): Linux OS

Programming language: C++, CUDA

Other requirements: Boost 1.49 or higher, FFTW 3.3 or

higher, CUDA Toolkit 4.2 or higher

License: Unlimited for academic use

Any restrictions to use by non-academics: license

needed

Endnote
a Available at http://ami.scripps.edu/redmine/projects/

ami/wiki/KLH_dataset_I.

Additional file

Additional file 1: Supplementary materials.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TVH - implemented the software, carried out the experiments, made the

figures, wrote sections of the manuscript. XC - advised on the parallelisation

and reviewed the manuscript. PS - advised on the implementation, proposed

the experiments, reviewed and corrected the manuscript. DWR - advised on

the implementation and experiments, wrote some sections of the manuscript.

All authors read and approved the final manuscript.

Acknowledgements
This work was funded in part by CNRS and by Agence Nationale de la Recerche,

grant reference ANR-MNU-006-02. We thank the French Grid5000 network

(https://www.grid5000.fr) for access to the Griffon and Adonis clusters.

Author details
1 Inria Nancy - Grand Est, 615 rue du Jardin Botanique, 54600 Villers-lès-Nancy,

France. 2 IGBMC, 1 rue Laurent Fries, 67404 Illkirch, France.

Received: 13 June 2013 Accepted: 14 October 2013

Published: 21 October 2013

References
1. Orlova EV, Saibil HR: Structural analysis of macromolecular assemblies

by electron microscopy. Chem Rev 2011, 111(12):7710–7748.
2. Lanzavecchia S, Bellon PL, Radermacher M: Fast and accurate

three-dimensional reconstruction from projections with random
orientations via Radon transforms. J Struct Biol 1999, 128(2):152–164.

http://gem.loria.fr/gEMpicker.html
http://ami.scripps.edu/redmine/projects/ami/wiki/KLH_dataset_I
http://ami.scripps.edu/redmine/projects/ami/wiki/KLH_dataset_I
http://www.biomedcentral.com/content/supplementary/1472-6807-13-25-S1.pdf
https://www.grid5000.fr

Hoang et al. BMC Structural Biology 2013, 13:25 Page 10 of 10

http://www.biomedcentral.com/1472-6807/13/25

3. Nicholson WV, Glaeser RM: Review: automatic particle detection in
electron microscopy. J Struct Biol 2001, 133(2–3):90–101.

4. Zhu Y, Carragher B, Glaeser RM, Fellmann D, Bajaj C, Bern M, Mouche F,

de Haas F, Hall RJ, Kriegman DJ, Ludtke SJ, Mallick SP, Penczek PA,

Roseman AM, Sigworth FJ, Volkmann N, Potter CS: Automatic particle
selection: results of a comparative study. J Struct Biol 2004,
145(1–2):3–14.

5. Voss NR, Yoshioka CK, Radermacher M, Potter CS, Carragher B: DoG
Picker and TiltPicker: software tools to facilitate particle selection in
single particle electron microscopy. J Struct Biol 2009, 166(2):205–213.

6. Langlois R, Pallesen J, Frank J: Reference-free particle selection
enhanced with semi-supervised machine learning for cryo-electron
microscopy. J Struct Biol 2011, 175(3):353–361.

7. Roseman AM: Particle finding in electron micrographs using a fast
local correlation algorithm. Ultramicroscopy 2003, 94(3–4):225–236.

8. Roseman AM: FindEM – A fast, efficient program for automatic
selection of particles from electron micrographs. J Struct Biol 2004,
145(1–2):91–99.

9. Rath BK, Frank J: Fast automatic particle picking from cryo-electron
micrographs using a locally normalized cross-correlation function: a
case study. J Struct Biol 2004, 145(1–2):84–90.

10. Chen JZ, Grigorieff N: SIGNATURE: A single-particle selection system
for molecular electron microscopy. J Struct Biol 2007, 157:168–173.

11. Mallick SP, Zhu Y, Kriegman D: Detecting particles in cryo-EM
micrographs using learned features. J Struct Biol 2004, 145(1–2):52–62.

12. Sorzano C, Recarte E, Alcorlo M, Bilbao-Castro J, San-Martín C, Marabini R,

Carazo J: Automatic particle selection from electron micrographs
using machine learning techniques. J Struct Biol 2009, 167(3):252–260.

13. Ogura T, Sato C: Automatic particle pickupmethod using a neural
network has high accuracy by applying an initial weight derived
from eigenimages: a new reference free method for single-particle
analysis. J Struct Biol 2004, 145(1–2):63–75.

14. Arbeláez P, Han BG, Typke D, Lim J, Glaeser RM, Malik J: Experimental
evaluation of support vector machine-based and correlation-based
approaches to automatic particle selection. J Struct Biol 2011,
175(3):319–328.

15. Zhu Y, Carragher B, Mouche F, Potter CS: Automatic particle detection
through efficient Hough transforms. IEEE Trans Med Imaging 2003,

22(9):1053–1062.
16. Adiga U, Baxter WT, Hall RJ, Rockel B, Rath BK, Frank J, Glaeser R: Particle

picking by segmentation: A comparative study with SPIDER-based
manual particle picking. J Struct Biol 2005, 152(3):211–220.

17. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE, Purcell

TJ: A survey of general-purpose computation on graphics hardware.
Comput Graph Forum 2007, 26:80–113.

18. Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K:

Accelerating molecular modeling applications with graphics
processors. J Comput Chem 2007, 28:2618–2640.

19. Ufimtsev IS, Martínez TJ: Quantum chemistry on graphical processor
units. 1. Strategies for two-electron integral evaluation. J Chem
Theory Comput 2008, 4:222–231.

20. Manavski SA, Valle G: CUDA-compatible GPU cards as efficient
hardware accelerators for Smith-Waterman sequence alignment.
BMC Bioinformatics 2008, 9(2):S10.

21. Ritchie DW, Venkatraman V: Ultra-fast FFT protein docking on
graphics processors. Bioinformatics 2010, 26(19):2398–2405.

22. Li X, Grigorieff N, Cheng Y: GPU-enabled FREALIGN: Accelerating
single particle 3D reconstruction and refinement in Fourier space
on graphics processors. J Struct Biol 2010, 172(3):407–412.

23. Zheng SQ, Branlund E, Kesthelyi B, Braunfeld MB, Cheng Y, Sedat JW,

Agard DA: A distributed multi-GPU system for high speed electron
microscopic tomographic reconstruction. Ultramicroscopy 2011,

111(8):1137–1143.
24. Castaño-Díez D, Kudryashev M, Arheit M, Stahlberg H: Dynamo: A

flexible, user-friendly development tool for subtomogram
averaging of cryo-EM data in high-performance computing
environments. J Struct Biol 2012, 178(2):139–151.

25. Intel Corporation: The Intel Math Kernel Library. 2012.
[http://software.intel.com/en-us/intel-mkl/]

26. Nvidia Corporation: The Nvidia CUDA Fast Fourier Transform library
(CUFFT). 2012. [http://developer.nvidia.com/cuda/cufft/]

27. Frigo M, Johnson S: The design and implementation of FFTW3.
Proc IEEE 2005, 93(2):216–231. [http://www.fftw.org/]

28. Cooley JW, Tukey JW: An algorithm for the machine calculation of
complex Fourier series.Math Comput 1965, 19:297–301.

29. Rader CM: Discrete Fourier transforms when the number of data
samples is prime. Proc IEEE 1968, 56(6):1107–1108.

30. Bluestein LI:A linear filtering approach to the computation of discrete
Fourier transform. IEEE Trans Audio Electroacoustics 1970, 18(4):451–455.

31. Nvidia Corporation: The CUDA C Programming Guide. 2012.
[http://docs.nvidia.com/cuda/index.html]

32. Eckel B: Thinking in C++: Practical Programming, 2nd edition. Upper Saddle

River, New Jersey 07458, USA: Prentice Hall; 2000.

33. Garg RP, Sharapov IA: Techniques for Optimizing Applications: High

Performance Computing. Upper Saddle River, New Jersey, 07458, USA:

Prentice Hall; 2001.

34. Schäling B: The Boost C++ Libraries. Suite O-175 Laguna Hills, CA 92637,

USA: XML Press; 2011. [http://www.boost.org/]

35. Gropp W, Lusk E, Skjellum A: UsingMPI: Portable Parallel Programming with

the Message Passing Interface, 2nd edition. Cambridge, MA 02142-1493,

USA: The MIT Press; 1999.

36. Chapman B, Jost G, van der Pas R: Using OpenMP: Portable SharedMemory

Parallel Programming. Cambridge, MA 02142-1493, USA: The MIT Press;

2007.

37. Orlova EV, Dube P, Harris J, Beckman E, Zemlin F, Markl J, van Heel M:

Structure of keyhole limpet hemocyanin type 1 (KLH1) at 15 Å
resolution by electron cryomicroscopy and angular reconstitution.
J Mol Biol 1997, 271(3):417–437.

38. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ: EMAN2:
An extensible image processing suite for electron microscopy.
J Struct Biol 2007, 157:38–46.

doi:10.1186/1472-6807-13-25
Cite this article as: Hoang et al.: gEMpicker: a highly parallel GPU-
accelerated particle picking tool for cryo-electron microscopy. BMC Struc-
tural Biology 2013 13:25.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://software.intel.com/en-us/intel-mkl/
http://developer.nvidia.com/cuda/cufft/
http://www.fftw.org/
http://docs.nvidia.com/cuda/index.html
http://www.boost.org/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	NCC-based automatic particle picking
	FFT size and zero-padding
	Parallel processing framework
	Cluster implementation
	The computational platforms

	Results and discussion
	FFT-based NCC performance comparison
	Multi-node cluster performance
	Case study: keyhole limpet hemocyanin

	Conclusions
	Availability and requirements
	Endnote
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

