A. H. Nayfeh, Nonlinear interactions: analytical, computational and experimental methods Wiley series in nonlinear science, 2000.

M. Amabili, Nonlinear vibrations and stability of shells and plates, 2008.
DOI : 10.1017/CBO9780511619694

R. Seydel, Practical bifurcation and stability analysis, 2010.
DOI : 10.1007/978-1-4419-1740-9

B. Krauskopf, H. Osinga, and J. Galán-vioque, Numerical continuation methods for dynamical systems, 2007.
DOI : 10.1007/978-1-4020-6356-5

A. H. Nayfeh and D. T. Mook, Nonlinear oscillations, 1979.

R. Lewandowski, Computational formulation for periodic vibration of geometrically nonlinear structures???part 2: Numerical strategy and examples, International Journal of Solids and Structures, vol.34, issue.15, pp.1949-1964, 1997.
DOI : 10.1016/S0020-7683(96)00126-6

H. N. Arafat and A. H. Nayfeh, Non-linear responses of suspended cables to primary resonance excitations, Journal of Sound and Vibration, vol.266, issue.2, pp.325-354, 2003.
DOI : 10.1016/S0022-460X(02)01393-7

M. Amabili, F. Pellicano, and M. P. Pa¨?doussispa¨?doussis, NON-LINEAR DYNAMICS AND STABILITY OF CIRCULAR CYLINDRICAL SHELLS CONTAINING FLOWING FLUID, PART II: LARGE-AMPLITUDE VIBRATIONS WITHOUT FLOW, Journal of Sound and Vibration, vol.228, issue.5, pp.1103-1124, 1999.
DOI : 10.1006/jsvi.1999.2476

C. Touzé, M. Amabili, and O. Thomas, Reduced-order models for large-amplitude vibrations of shells including in-plane inertia, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.21-24, pp.21-242030, 2008.
DOI : 10.1016/j.cma.2008.01.002

M. Amabili, A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach, Journal of Sound and Vibration, vol.264, issue.5, pp.1091-1125, 2003.
DOI : 10.1016/S0022-460X(02)01385-8

L. Kurpa, G. Pilgun, and M. Amabili, Nonlinear vibrations of shallow shells with complex boundary: R-functions method and experiments, Journal of Sound and Vibration, vol.306, issue.3-5, pp.3-5580, 2007.
DOI : 10.1016/j.jsv.2007.05.045

A. Lazarus, O. Thomas, and J. Deü, Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS, Finite Elements in Analysis and Design, vol.49, issue.1, pp.35-51, 2012.
DOI : 10.1016/j.finel.2011.08.019

URL : https://hal.archives-ouvertes.fr/hal-01084700

F. Boumediene, A. Miloudi, J. M. Cadou, L. Duigou, and E. H. Boutyour, Nonlinear forced vibration of damped plates by an asymptotic numerical method, Computers & Structures, vol.87, issue.23-24, pp.1508-1515, 2009.
DOI : 10.1016/j.compstruc.2009.07.005

URL : https://hal.archives-ouvertes.fr/hal-00494489

F. Boumediene, L. Duigou, E. H. Boutyour, A. Miloudi, and J. M. Cadou, Nonlinear forced vibration of damped plates coupling asymptotic numerical method and reduction models, Computational Mechanics, vol.88, issue.3, pp.359-377, 2011.
DOI : 10.1007/s00466-010-0549-2

URL : https://hal.archives-ouvertes.fr/hal-00987126

A. A. Muravyov and S. A. Rizzi, Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures, Computers & Structures, vol.81, issue.15, pp.1513-1523, 2003.
DOI : 10.1016/S0045-7949(03)00145-7

M. Mignolet and C. Soize, Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.45-48, pp.3951-3963, 2008.
DOI : 10.1016/j.cma.2008.03.032

URL : https://hal.archives-ouvertes.fr/hal-00686140

M. Mignolet, A. Przekop, S. A. Rizzi, and S. M. Spottswood, A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures, Journal of Sound and Vibration, vol.332, issue.10, pp.2437-2460, 2013.
DOI : 10.1016/j.jsv.2012.10.017

D. Chapelle and K. J. Bathe, The Finite Element Analysis of Shells ? Fundamentals, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00839738

L. Meirovitch, Computational Methods in Structural Dynamics. Sijthoff and Noordhoff, The Netherlands, 1980.

G. Berkooz, P. Holmes, and J. L. Lumley, The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows, Annual Review of Fluid Mechanics, vol.25, issue.1, pp.539-575, 1993.
DOI : 10.1146/annurev.fl.25.010193.002543

P. Krysl, S. Lall, and J. E. Marsden, Dimensional model reduction in non???linear finite element dynamics of solids and structures, International Journal for Numerical Methods in Engineering, vol.31, issue.4, pp.479-504, 2001.
DOI : 10.1002/nme.167

M. Amabili and C. Touzé, Reduced-order models for nonlinear vibrations of fluid-filled circular cylindrical shells: Comparison of POD and asymptotic nonlinear normal modes methods, Journal of Fluids and Structures, vol.23, issue.6, pp.885-903, 2007.
DOI : 10.1016/j.jfluidstructs.2006.12.004

URL : https://hal.archives-ouvertes.fr/hal-00838880

K. J. Bathe, Finite Element Procedures, 1996.

E. N. Dvorkin and K. J. Bathe, A continuum mechanics based four???node shell element for general non???linear analysis, Engineering Computations, vol.1, issue.1, pp.77-88, 1984.
DOI : 10.1108/eb023562

E. Sanchez-palencia, Asymptotic and spectral properties of a class of singular-stiff problems, J. Math. Pures Appl, vol.71, pp.379-406, 1992.

E. Artioli, L. Beirão-da-veiga, H. Hakula, and C. Lovadina, Free vibrations for some Koiter shells of revolution, Applied Mathematics Letters, vol.21, issue.12, pp.1245-1248, 2008.
DOI : 10.1016/j.aml.2007.10.030

R. M. Rosenberg, The Normal Modes of Nonlinear n-Degree-of-Freedom Systems, Journal of Applied Mechanics, vol.29, issue.1, pp.7-14, 1962.
DOI : 10.1115/1.3636501

URL : https://hal.archives-ouvertes.fr/hal-01344457

R. M. Rosenberg, On Nonlinear Vibrations of Systems with Many Degrees of Freedom, Advances in Applied Mechanics, vol.9, pp.155-242, 1966.
DOI : 10.1016/S0065-2156(08)70008-5

A. F. Vakakis, L. I. Manevitch, Y. V. Mikhlin, V. N. Philipchuck, and A. A. Zevin, Normal modes and localization in non-linear systems, 1996.

A. F. Vakakis, NON-LINEAR NORMAL MODES (NNMs) AND THEIR APPLICATIONS IN VIBRATION THEORY: AN OVERVIEW, Mechanical Systems and Signal Processing, vol.11, issue.1, pp.3-22, 1997.
DOI : 10.1006/mssp.1996.9999

URL : https://hal.archives-ouvertes.fr/hal-01354037

A. F. Vakakis, O. V. Gendelman, L. A. Bergman, D. M. Mcfarland, G. Kerschen et al., Nonlinear targeted energy transfer in mechanical and structural systems I, 2008.

G. Kerschen, M. Peeters, J. C. Golinval, and A. F. Vakakis, Nonlinear normal modes, Part I: A useful framework for the structural dynamicist, Mechanical Systems and Signal Processing, vol.23, issue.1, pp.170-194, 2009.
DOI : 10.1016/j.ymssp.2008.04.002

URL : https://hal.archives-ouvertes.fr/hal-01357931

E. J. Doedel, R. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov et al., Auto 2000: Continuation and bifurcation software for ordinary differential equations, 2002.

C. Touzé, O. Thomas, and M. Amabili, Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates, International Journal of Non-Linear Mechanics, vol.46, issue.1, pp.234-246, 2011.
DOI : 10.1016/j.ijnonlinmec.2010.09.004

C. Touzé, S. Bilbao, and O. Cadot, Transition scenario to turbulence in thin vibrating plates, Journal of Sound and Vibration, vol.331, issue.2, pp.412-433, 2012.
DOI : 10.1016/j.jsv.2011.09.016

M. Ducceschi, C. Touzé, S. Bilbao, and C. J. Webb, Nonlinear dynamics of rectangular plates: investigation of modal interaction in free and forced vibrations, Acta Mechanica, vol.26, issue.1, 2013.
DOI : 10.1007/s00707-013-0931-1

URL : https://hal.archives-ouvertes.fr/hal-01134793

M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, and J. C. , Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques, Mechanical Systems and Signal Processing, vol.23, issue.1, pp.195-216, 2009.
DOI : 10.1016/j.ymssp.2008.04.003

M. Peeters, G. Kerschen, J. C. Golinval, C. Stephan, and P. Lubrina, Nonlinear Normal Modes of a Full-Scale Aircraft, 29th International Modal Analysis Conference, 2011.
DOI : 10.1007/978-1-4419-9299-4_19

F. Blanc, C. Touzé, J. Mercier, K. Ege, and A. Bonnet-ben-dhia, On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems, Mechanical Systems and Signal Processing, vol.36, issue.2, pp.520-539, 2013.
DOI : 10.1016/j.ymssp.2012.10.016

URL : https://hal.archives-ouvertes.fr/hal-00772317

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration: structurepreserving algorithms for Ordinary differential equations, 2006.

A. H. Nayfeh and W. Lacarbonara, On the discretization of distributed-parameter systems with quadratic and cubic non-linearities, Nonlinear Dynamics, vol.13, issue.3, pp.203-220, 1997.
DOI : 10.1023/A:1008253901255

G. Rega, W. Lacarbonara, and A. H. Nayfeh, Reduction methods for nonlinear vibrations of spatially continuous systems with initial curvature. Solid Mechanics and its applications, pp.235-246, 2000.

M. Amabili, F. Pellicano, and M. P. Pa¨?doussispa¨?doussis, NON-LINEAR DYNAMICS AND STABILITY OF CIRCULAR CYLINDRICAL SHELLS CONTAINING FLOWING FLUID. PART III: TRUNCATION EFFECT WITHOUT FLOW AND EXPERIMENTS, Journal of Sound and Vibration, vol.237, issue.4, pp.617-640, 2000.
DOI : 10.1006/jsvi.2000.3071

C. Touzé, O. Thomas, and A. Chaigne, Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes, Journal of Sound and Vibration, vol.273, issue.1-2, pp.77-101, 2004.
DOI : 10.1016/j.jsv.2003.04.005

A. H. Nayfeh, J. F. Nayfeh, and D. T. Mook, On methods for continuous systems with quadratic and cubic nonlinearities, Nonlinear Dynamics, vol.89, issue.2, pp.145-162, 1992.
DOI : 10.1007/BF00118990

M. Pakdemirli, S. A. Nayfeh, and A. H. Nayfeh, Analysis of One-to-One Autoparametric Resonances in Cables ??? Discretization vs. Direct Treatment, Nonlinear Dynamics, vol.8, pp.65-83, 1995.
DOI : 10.1007/978-94-011-0367-1_4

M. Amabili, Non-linear vibrations of doubly curved shallow shells, International Journal of Non-Linear Mechanics, vol.40, issue.5, pp.683-710, 2005.
DOI : 10.1016/j.ijnonlinmec.2004.08.007

C. Touzé and O. Thomas, Non-linear behaviour of free-edge shallow spherical shells: Effect of the geometry, International Journal of Non-Linear Mechanics, vol.41, issue.5, pp.678-692, 2006.
DOI : 10.1016/j.ijnonlinmec.2005.12.004

S. W. Shaw and C. Pierre, Non-linear normal modes and invariant manifolds, Journal of Sound and Vibration, vol.150, issue.1, pp.170-173, 1991.
DOI : 10.1016/0022-460X(91)90412-D

URL : https://hal.archives-ouvertes.fr/hal-01310674

C. Touzé and M. Amabili, Non-linear normal modes for damped geometrically nonlinear systems: application to reduced-order modeling of harmonically forced structures, Journal of Sound and Vibration, vol.298, pp.4-5958, 2006.