An algorithm for analysis of the structure of finitely presented Lie algebras

Abstract : We consider the following problem: what is the most general Lie algebra satisfying a given set of Lie polynomial equations? The presentation of Lie algebras by a finite set of generators and defining relations is one of the most general mathematical and algorithmic schemes of their analysis. That problem is of great practical importance, covering applications ranging from mathematical physics to combinatorial algebra. Some particular applications are constructionof prolongation algebras in the Wahlquist-Estabrook method for integrability analysis of nonlinear partial differential equations and investigation of Lie algebras arising in different physical models. The finite presentations also indicate a way to q-quantize Lie algebras. To solve this problem, one should perform a large volume of algebraic transformations which is sharply increased with growth of the number of generators and relations. For this reason, in practice one needs to use a computer algebra tool. We describe here an algorithm for constructing the basis of a finitely presented Lie algebra and its commutator table, and its implementation in the C language. Some computer results illustrating our algorithmand its actual implementation are also presented.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 1997, 1, pp.217-228
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00955699
Contributeur : Alain Monteil <>
Soumis le : mercredi 5 mars 2014 - 09:31:51
Dernière modification le : mercredi 29 novembre 2017 - 10:26:23
Document(s) archivé(s) le : jeudi 5 juin 2014 - 10:55:27

Fichier

dm010113.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00955699, version 1

Collections

Citation

Vladimir P. Gerdt, Vladimir V. Kornyak. An algorithm for analysis of the structure of finitely presented Lie algebras. Discrete Mathematics and Theoretical Computer Science, DMTCS, 1997, 1, pp.217-228. 〈hal-00955699〉

Partager

Métriques

Consultations de la notice

168

Téléchargements de fichiers

210