J. Baladron, D. Fasoli, O. Faugeras, and J. Touboul, Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons, The Journal of Mathematical Neuroscience, vol.2, issue.1, 2012.
DOI : 10.1186/2190-8567-2-10

URL : https://hal.archives-ouvertes.fr/inserm-00732288

J. R. Baxter and N. C. Jain, An Approximation Condition for Large Deviations and Some Applications, Convergence in Ergodic Theory and Probability, 1993.
DOI : 10.1515/9783110889383.63

G. Ben-arous and A. Guionnet, Large deviations for langevin spin glass dynamics, Probability Theory and Related Fields, pp.455-509, 1995.

P. Bressloff, Stochastic Neural Field Theory and the System-Size Expansion, SIAM Journal on Applied Mathematics, vol.70, issue.5, pp.1488-1521, 2009.
DOI : 10.1137/090756971

A. Budhiraja, P. Dupuis, and F. M. , Large deviation properties of weakly interacting processes via weak convergence methods, The Annals of Probability, vol.40, issue.1, pp.74-102, 2012.
DOI : 10.1214/10-AOP616

M. Buice and J. Cowan, Field-theoretic approach to fluctuation effects in neural networks, Physical Review E, vol.75, issue.5, p.75, 2007.
DOI : 10.1103/PhysRevE.75.051919

M. Buice, J. Cowan, and C. Chow, Systematic Fluctuation Expansion for Neural Network Activity Equations, Neural Computation, vol.13, issue.1, pp.377-426, 2010.
DOI : 10.1093/acprof:oso/9780198509233.001.0001

M. J. Cáceres, J. A. Carillo, and B. Perhame, Analysis of Nonlinear Noisy Integrate&Fire Neuron Models: blow-up and steady states, The Journal of Mathematical Neuroscience, vol.1, issue.1, 2011.
DOI : 10.1007/s11118-008-9093-5

B. Cessac, Increase in Complexity in Random Neural Networks, Journal de Physique I, vol.5, issue.3, pp.409-432, 1995.
DOI : 10.1051/jp1:1995135

URL : https://hal.archives-ouvertes.fr/jpa-00247065

B. Cessac and M. Samuelides, From neuron to neural networks dynamics., EPJ Special topics, Dynamical Neural Networks, pp.7-88, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00095871

T. Chiyonobu and S. Kusuoka, The large deviation principle for hypermixing processes, Probability Theory and Related Fields, pp.627-649, 1988.

A. Crisanti and H. Sompolinsky, Dynamics of spin systems with randomly asymmetric bonds: Langevin dynamics and a spherical model, Physical Review A, vol.36, issue.10, pp.4922-4939, 1987.
DOI : 10.1103/PhysRevA.36.4922

L. F. Cugliandolo, J. Kurchan, P. L. Doussal, and L. Peliti, Glassy behaviour in disordered systems with nonrelaxational dynamics, Physical review letters, pp.78-350, 1997.

D. Daley, D. Vere, and -. , An introduction to the theory of point processes: volume II: general theory and structure, 2007.

D. Dawson and J. Gartner, Large deviations from the mckean-vlasov limit for weakly interacting diffusions, Stochastics, p.20, 1987.

P. Dayan and L. Abbott, Theoretical Neuroscience : Computational and Mathematical Modeling of Neural Systems, 2001.

M. Donsker and S. Varadhan, Asymptotic evaluation of certain markov process expectations for large time. IV, Communications on Pure and Applied Mathematics, vol.58, issue.2, pp.183-212, 1983.
DOI : 10.1002/cpa.3160360204

M. Donsker and S. Varadhan, Large deviations for stationary Gaussian processes, Communications in Mathematical Physics, vol.36, issue.1-2, pp.187-210, 1985.
DOI : 10.1007/BF01206186

S. Elboustani and A. Destexhe, A Master Equation Formalism for Macroscopic Modeling of Asynchronous Irregular Activity States, Neural Computation, vol.85, issue.1, pp.46-100, 2009.
DOI : 10.1523/JNEUROSCI.3508-05.2005

O. Faugeras and J. Maclaurin, A large deviation principle and an analytical expression of the rate function for a discrete stationary gaussian process, tech. rep., ArXiV: http, 2013.

M. Fischer, On the form of the large deviation rate function for the empirical measures of weakly interacting systems, Bernoulli, vol.20, issue.4, 2012.
DOI : 10.3150/13-BEJ540

]. W. Gerstner, Time structure of the activity in neural network models, Physical Review E, vol.51, issue.1, pp.738-758, 1995.
DOI : 10.1103/PhysRevE.51.738

W. Gerstner and W. Kistler, Spiking Neuron Models, 2002.

W. Gerstner and J. Van-hemmen, Coherence and incoherence in a globally coupled ensemble of pulse-emitting units, Physical review letters, pp.312-315, 1993.

I. Ginzburg and H. Sompolinsky, Theory of correlations in stochastic neural networks, Physical Review E, vol.50, issue.4, p.50, 1994.
DOI : 10.1103/PhysRevE.50.3171

A. Guionnet, Dynamique de Langevin d'un verre de spins, 1995.

E. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability And Bursting, 2007.

L. Lapicque, Recherches quantitatifs sur l'excitation des nerfs traitee comme une polarisation, J. Physiol. Paris, vol.9, pp.620-635, 1907.

T. M. Liggett, Interacting Particle Systems, 2005.

O. Moynot, Etude mathématique de la dynamique des réseaux neuronaux aléatoires récurrents, 1999.

O. Moynot and M. Samuelides, Large deviations and mean-field theory for asymmetric random recurrent neural networks, Probability Theory and Related Fields, pp.41-75, 2002.

M. Samuelides and B. Cessac, Random recurrent neural networks, European Physical Journal -Special Topics, vol.142, pp.7-88, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00529560

H. Sompolinsky and A. Zippelius, Dynamic Theory of the Spin-Glass Phase, Physical Review Letters, vol.47, issue.5, pp.47-359, 1981.
DOI : 10.1103/PhysRevLett.47.359