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Abstract— In this paper, we present the main difference 
between Newtonian and Cartesian approaches to scientific 
creativity when related to Program Synthesis (PS). The main 
contribution of the paper is a thorough discussion on the 
creative building of a theorem prover. We illustrate these ideas 
by an analysis of Peano’s axioms defining the set of non 
negative integers, from the point of view of creativity. This 
analysis is then applied to the more complex case of the general 
framework for our own ‘Constructive Matching Method ology’ 
(CMM) as a Cartesian approach to the creation of an 
autonomous theorem prover for PS. 

Keywords-program synthesis systems; methodology; 
Constructive Matching methodology;  creativity, symbiosis 

I.  INTRODUCTION 

Automatic construction of programs is obviously a 
desirable goal. There are two main approaches to tackle with 
this task, namely inductive and deductive. In this paper, we 
are interested in the deductive approach to Program 
Synthesis (PS) introduced by Manna and Waldinger in the 
eighties [22] and followed by many authors, for instance [4], 
[5], [8], [10], [13], [21], [23], [26]. This problem is however 
undecidable as a consequence of Gödel’s Theorems [19]. In 
this paper, we shall present an attempt to, as much as 
possible, approximate the automatization of the deductive 
approach to PS by introducing the conceptual switch of 
‘Cartesian Intuitionism’, defined by Franova [16] and 
informally described in the book Franova [15]. 

This approach is, from an epistemological point of view, 
an interesting alternative and a complement to the more 
formal Newtonian approaches because it enables to handle 
informal specifications. Nevertheless, it is still too soon to 
compare these approaches on the basis of their relative 
performance. From a practical point of view, in building 
what we call Cartesian Intuitionism, we try to open the way 
to a creative approach that provides a frame of thought to the 
user of a theorem prover in the process of recovering from a 
failure.   

Before going into the details of the structure of the paper, 
let us stress the role of Section IV of this paper. This Section 
contains an example illustrating and underlining the deep gap 
between creating a set of axioms, that is to say, Cartesian 
creation of these axioms and making use of a given set of 
axioms, that is to say Newtonian construction of a proof. 

In Section IV, we illustrate Cartesian creation of the 
Newtonian theory of the non negative integers build using 

Peano’s axiom. The idea is that each of its 5 axioms depends 
on the other ones to be justified. Besides, modifying one 
axiom modifies the others as we shall then illustrate. Another 
obvious example of Cartesian creativity, though at a much 
higher level, is provided by Lobachevski’s geometry. 
Euclidian geometry is a very efficient Newtonian system. It 
becomes Cartesian when you try to play with the axiom 
relative to the parallels, where you ‘create’ universes where 
parallels in the same plane can cross once, several times, all 
cross at the same point or not etc. The creative aspects we 
deal with here are akin to these two examples: Our axiomatic 
system has to invent new axioms each time it meets a failure. 

The paper is structured as follows. In Section II, we recall 
the formulation of the deductive approach to PS. In Section 
III, we recall the main features of Newtonian and Cartesian 
approaches to scientific creativity related to PS. In particular, 
we shall recall the basic notions of Cartesian intuitionism. 
Section IV has been already summarized. We shall devote 
Section V to the description of our Constructive Matching 
Methodology (CMM) in the light of Cartesian Intuitionism. 
In Section VI, we present a few epistemological remarks. 

II. PROGRAM SYNTHESIS – DEFINITION OF THE PROBLEM 

By program synthesis we call here the deductive 
approach to automatic construction of recursive programs 
introduced by Manna and Waldinger [22]. This approach 
starts with a specification formula of the form ∀ x ∃ z {P(x) 
⇒ R(x,z)}, where x is a vector of input variables, z is a 
vector of output variables, P(x) is the input condition. R(x,z) 
is a quantifiers-free formula and expresses the input-output 
relation, i.e., what the synthesized program should do. A 
proof by recursion of this formula, when successful, provides 
a program for the Skolem function sf that represents this 
program, i.e., R(x,sf(x)) holds for all x such that P(x) is 
verified. In other words, program synthesis transforms the 
problem of program construction into a particular theorem 
proving problem. The role of the deductive approach is thus 
to build an inductive theorem prover specialized for 
specification formulas. There are two main problems with 
respect to this role: 

1. Treatment of strategic aspects of inductive theorem 
proving system specialized for specification 
formulae. 

We have illustrated this first problem on a simple  
specification theorem (a computation of the last element of a 
list) in [16] and a complex example (synthesis of 
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Ackermann’s function defined with respect to the second 
argument) is presented in [12]. 

2. Treatment of strategic aspects of creativity related to 
the design of such theorem prover. 

The present paper is concerned with this second problem, 
that is, the one of building a system able to perform program 
synthesis. Strategic aspect can seldom been efficiently 
formalized. We moreover deal with creativity, the formal 
aspects of which start being explored. It is obviously too 
soon to present a general (Newtonian) theory of (Cartesian) 
creativity in the usual style of lemmas, theorems etc.; thus 
the nature of this paper is more epistemological than 
axiomatic. 

III.  NEWTONIAN AND CARTESIAN APPROACHES TO PS 

In the previous Section, we have mentioned that we are 
here interested in the creative process of construction of an 
inductive theorem prover. This prover has to be specialized 
in specification formulae. There are two main styles in this 
creative process. For particular reasons presented in [16], we 
call ‘Newtonian’ the standard approach and ‘Cartesian’ the 
non-classical one. In [16], we have presented in detail the 
above two styles. In this Section, we shall recall the main 
features necessary for understanding the present 
communication. 

A. Newtonian Approach 

The specialists in the Newtonian approach to PS build 
their own theorem prover, one based on a logic of sequential 
research. Classically, the reference system of any theorem 
proving system consists in a set of axioms, rules of inference 
and control mechanisms devoted to finding a recursive proof 
for the specification formula. In the Newtonian approach, the 
various blocks composing the reference system are a 
composition of some tools chosen among the whole set of all 
existing tools. In the case where an author introduces a new 
block he/she invented him/herself, then this new block must 
be coherent with the existing tools. In other words, more 
formally, Newtonian approach considers creativity as a finite 
linear sequence: 

beginning  
advancement-1  
advancement-2  
…  
advancement-n  
end. 

In this sense, Newtonian creativity is similar to 
essentialism within the frame of logics as defined by J.Y. 
Girard in [18]. 

Since this approach is based on standard mathematical 
knowledge, it inevitably inherits the negative results of Kurt 
Gödel [19]. The results of Gödel are said to be negative 
because they show that the objective of PS, as it is 
formulated in beginning, cannot lead to a successful end of 
the task in the classical framework. This happens because the 
classical approach focalizes on the problem 

∃ formal framework  
in which ∀ specification formula has a solution. 

Gödel’s results show the impossibility to define a formal 
logical framework, containing the natural numbers, allowing 
to deal with the automated resolution (confirm or counter) of 
specifications given in a general way. This is why 
Newtonian approaches react by placing themselves inside 
user-dependent theorem proving assistants, such as ACL2 
[6], the system RRL [20], the system NuPRL [9], the Oyster-
Clam system [7], the extensions of ISABELLE [24], the 
system COQ [3], Matita Proof Assistant [1] and Otter-
Lambda [2]. 

B. Cartesian Approach 

We have developed an alternative to this classical 
approach by taking into account the creativity necessary for 
designing a PS system from the point of view of what we 
call Cartesian Intuitionism [16]. This non-classical creativity  

(a) focalises on the problem: {∀ specification formula 
∃ formal framework in which the given 
specification formula has a solution} 

(b) oscillates between the problems {∃ framework ∀ 
specification} and {∀ specification ∃ framework} 

(c) considers the creativity process in its recursive 
cyclic version given by the scheme 

beginning end

mean  
where the arrow means “steers”. 

These three points give to Cartesian Intuitionism the 
feature of a combination of what is called essentialism and 
existentialism within the frame of logics by Girard [18]. 

Points (a), (b), and (c) together mean that Cartesian 
approach to PS is based on a logic of recursive science where 
the reference system of the problem and the milestones of 
construction of the solution (i.e., the definitions and the rules 
of inference of a given specification formula) are formulated 
hand in hand with the development of the solution. 
Moreover, the exact demarcation of the reference system and 
the milestones of construction is the final stage of the 
process, and it is also a part of the solution. It follows that 
Cartesian approach specifies in an informal way the purpose 
to be reached, by a necessarily informal formulation of the 
reference system. For instance, CMM specifies the purpose 
of PS informally by the sentence: “Create a custom-made 
mechanism for proving specification formulae that 
automates PS as much as possible.” We shall say more about 
our application of Cartesian approach to PS later in Section 
V, because we need first to clarify the model of creation for 
CMM in the following Section. 

IV.  NEWTONIAN CONSTRUCTION VERSUS CARTESIAN 

CREATION 

In this Section, we shall be interested in the set of natural 
numbers N, seen here as a creation model for particular 
complex systems. More precisely, we shall point out the 
difference between the use and the creation of Peano’s 
axioms. Peano’s axioms define the arithmetic properties of 
natural numbers N. These axioms include a constant symbol 
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0 and unary function symbol S. These axioms are usually 
used to build formal proofs about natural numbers. Our 
presentation does not deal with this topic, but with the one of 
reasoning about the construction of these axioms, that is the 
creation process involved in their building. 

Supposing that the membership relation “∈ ” and the 
equality “=” are already defined, the basic Peano’s axioms 
read: 

(A1)  0 ∈  N.  
(A2)  if n ∈  N then S(n) ∈  N. 
(A3)  for all n ∈  N, S(n) ≠ 0. 
(A4)  for all n, m ∈  N, if S(n) = S(m), then n = m. 
(A5) if M is a set such that 

•  0 ∈  M, and 
•  for every n ∈  N, if n ∈  M then S(n) ∈  M 

 then M contains every natural number. 
We shall tackle here, in this Section, with the difference 

between the use and the creation of these five axioms. To 
this purpose, we need to precisely specify the difference 
between synergy and symbiosis.  

A. Synergistical Construction 

 An object is constructed synergistically when it can be 
considered as a result of the application of some specific 
tools from an existing tool-box, that is all the tools that have 
been developed in all scientific domains beforehand, for 
various purposes. These tools are not built in such a way that 
one calls another to solve one of its problems before this one 
has finished its computations. That is, tool B can call on tool 
A in one way only: the input of B contains a part of A 
computations, once A computations have been all achieved. 
It follows that these tools must be used independently of 
each other for the construction of other objects. During the 
construction process they do not lose their properties.  

B.  Symbiotical Construction 

In contrast to this, an object is constructed symbiotically 
when its parts, maybe seemingly independent, have, during 
the construction process, no meaning as isolated entities and 
a slight change of one part influences the others and the 
whole as we illustrate later.  

The main point we want to underline about Peano’s 
axioms is that their use is synergetic, while their 
construction process is symbiotic. In other words, when 
using them, we can use several axioms as being independent 
entities and the constructing elements 0, S, and N can be 
considered as isolated from each other, though they are 
interdependent elements as show (A1) and (A2). The 
following example will show in which way Peano’s axioms 
construction process is of symbiotic nature. 

Let us first consider axiom (A1), which deals with 0 and 
N. This first axiom, however, does not say what is the full 
meaning neither of 0 nor of N. In particular, from this axiom 
we cannot conclude that 0 is a basic element and that N is the 
final object we want to define. The axiom (A1) expresses 
only an interdependence between two symbols 0 and N. The 
symbol ∈,  does not tell more than 0 is an “element” and N is 
one of sets to which this element belongs. There is no 

difference, apart substitution, between (A1) and (B1): “rose 
∈  garden”. This means that the creator of Peano’s axioms 
has already in mind a “vision” or an “informal specification” 
of what 0 and N mean for him in this first axiom. In other 
words, writing this first axiom, the axiom’s creator 
intuitively knows what 0 and N will be once their description 
will be completed, i.e., when all the necessary (in this case 
five) axioms will be provided. In the creator’s mind, the first 
axiom contains implicitly and intuitively all the remaining 
axioms and all the axioms are constructed from his/her 
intuitive vision of the “whole”, i.e., N. Therefore, 0 and S do 
not belong to an already given tool-box and the meaning of 
0, S and N in the construction process is custom-made. 
Moreover, 0, S, and N are symbiotic during the construction 
process and they are not synergetic parts. During the 
construction process, N steers the realization of 0 and S and 
vice versa, they cannot be considered as isolated already 
known elements. We shall present later an example 
illustrating this symbiotic character; but we now need at first 
to introduce some more notions. 

C. Cartesian Creation 

N is constructed with the help of three “elements”, 
namely 0, S and N itself. Note that N self-reference is 
already acknowledged as a constructive recursive ‘trick’. 
These construction parts are usually named ‘the 
constructors’. We have already mentioned that these parts 
are symbiotic during the construction process, while when 
using the Peano’s axioms for reasoning, we may consider 
them synergetic “par la pensée” (as Descartes puts it). In the 
following, instead of ‘construction’ we shall call this process 
‘Cartesian creation’ in tribute to Descartes’ §62 of The 
Principles of philosophy [11]. We shall use the following 
notation:  

< A + B > = C, 
where A, B are constructors and C is the created “whole” for 
this kind of a symbiotic Cartesian creation. This defines N in 
the following way:  

< 0 + S + N > = N. 
Now, we can illustrate the symbiotic character of the 

constructors 0, S and N. Let us consider Peano’s axioms 
without (A3). In such a case we have the liberty to suppose 
that there exists n ∈  N such that S(n) = 0. Let us suppose that 
S(S(0)) is such an element. We have then S(S(S(0))) = 0. Let 
us call (B3) this hypothesis. Then, (A1), (A2), (B3), (A4) 
and (A5) constitute a meaningful definition of the set that 
contains three elements, namely 0, S(0) and S(S(0)). This 
new axiomatic definition defines a set, N3, that is finite and 
thus is different from the infinite set N defined by Peano’s 
axioms. In other words, a little change in a property of one 
constructor altered the properties of all the constructors, 
including N which changed into N3. This is not the case in a 
synergic construction, where a change of one construction 
module may influence the behaviour of the whole but has no 
direct effect on the other modules. This explains why we so 
much stress the difference between symbiotic Cartesian 
creation and synergetic Newtonian construction. Once a 
symbiotic creation of a whole is completed, we may think of 
the constructors as being “unconnected” synergetic elements. 
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We just have shown that this thinking is not valid during the 
creation process. This is why there is also a difference 
between a creation process and the use of the completed 
whole created by the same process. 

An interesting feature of a symbiotic creation is that one 
cannot produce a sample or “architectural” miniature before 
the whole creation process is completed. Moreover, partial 
results are often incomprehensible outside the creation 
process which works mainly with informally specified 
problems that must be simultaneously solved. The 
drawbacks we just exposed must be one of the reasons why 
Cartesian creation is hardly reported in the scientific 
communications that concentrate on the result of the 
creation, not on their creative process itself. Researchers 
seem to prefer tool-box Newtonian progressive construction 
which provides the security of familiarity with such linear or 
modular processes. This may also explain why our original 
Cartesian approach is not used in the research on Program 
Synthesis. 

Summarizing this Section, we can say that Cartesian 
creation focuses on building a system, a whole, by 
progressively inventing symbiotic constructors. Such a 
progressive process is possible since the first constructors 
and the whole are described by a ‘mere’ informal 
specification, as we shall show in the next Section. The 
standard Newtonian research is not accustomed to such an 
informal goal specification and it usually gathers already 
existing mechanisms that have been certainly not custom-
designed for the given goal. This choice leads, during the 
construction process, to new problems, more often related to 
the chosen basic tools than to the given goal. These new 
problems ask for a new search for already existing tools and 
to attempts for adapting them to the given goal, a process 
that tends to fail when it is completely automated. In other 
words, in Cartesian creation, the basic tools, i.e., constructors 
and the whole system are custom-made, while in Newtonian 
construction, the basic words are “choice” and “adaptation” 
of already available tools. 

V. CMM IN THE LIGHT OF CARTESIAN INTUITIONISM 

The basic principle of Newtonian PS system is the use of 
a fixed set of specific strategies in order to solve the 
problems that are submitted to it. In case of failure, the user 
is requested to provide lemmas or axioms that lead to 
success.  

The basic principle of Cartesian PS system is also the use 
of a specific strategy defined by the axioms upon which the 
system is built. But this is true only as long as the system 
meets no failure. In case of failure, we build a new PS 
system possibly with a new solving strategy. We already 
illustrated such behaviour by building the pseudo-Peano 
system by replacing (A3) by (B3) and N by N3. If this kind 
of incomplete natural numbers is used to prove a theorem 
containing the term, say S(S(S(S(0)))), the ‘synthesis’ will 
fail. In a Newtonian approach, the user would be asked for a 
lemma specific to S(S(S(S(0)))) that enables a success. In 
such a case our approach would propose to modify the 
system of axioms by changing (B3) and N3. We fully agree 
that, in this particular case, a human feels the needed 

modification as being trivial and would rather suggest to 
enlarge the solution to introducing N itself. See below a 
modification that is less easy to find. 

Let us now provide a more complex example that 
illustrates a situation where modifying system of axioms 
defining PS mechanism is not trivial. 

Newtonian system called Otter-Lambda is presented by 
Beeson [2], together with several examples of its execution. 
We have chosen among them a formula 

∀ a ∀n { S(0) < a ⇒ n < exp(a,n) }        (*) 
that the Otter-Lambda system fails to prove when the basic 
information relative to (*) is given as a recursive definition 
of the exponentiation function exp (with respect to the 
second argument): 

(1) exp(u,0) = s(0) 

(2) exp(u,S(v)) = u*exp(u,v) 
of the addition and of the multiplication with respect to the 
first argument: 

(3) 0 + u = u 

(4) S(v) + u = S(v + u) 

(5) 0 * u = 0 

(6) S(v) * u = (v * u) + u  
 The definition of < is also recursive and given as: 
(7) 0 < y, if y ≠ 0 

(8) S(v) < y , if v < y & y ≠ S(v) 
Since the Otter-Lambda system fails, it requests some 

help from its human user. In [2], the user is able to provide 
the following lemmas that enable Otter-Lambda to complete 
the proof of (*). 

(9) not(u<v) or (x*u < x*v) or not(0 < x) 

(10) (x < y) or (y ≤ x) 

(11) not(y ≤ x) or not(x < y) 

(12) not(u < v) or not (v ≤ w) or (u < v) 

(13) not(S(0) < z) or not(0 < y) or (S(y) ≤ z*y) 

(14) 0 + x = x 
We applied our Cartesian approach to the same problem, 

which does not suggest to get any user’s help. The system 
determines n as the induction variable, since it occurs in 
recursive arguments of all the functions and predicates and 
the other possible candidate variable a occurs in the non-
recursive first argument of the function exp which would 
stop the evaluation process in an inductive proof. 
Nevertheless, our system notices at once a probable source of 
trouble: the predicate < is recursively defined on its first 
argument, while, in (*), the induction variable n occurs also 
in second position of the predicate <. At this stage, the 
system could suggest the user to provide a definition of < 
with respect to both argument (this would actually fail), or to 
the second argument (this would fail as well), or else, a non 
recursive definition (that would succeed). As already 
claimed, our system does not call on its user, and it will 
proceed by calling a custom-designed constructor module we 
named “Synthesis of Formal Specifications of Predicates” 
described by Franova and Popelinsky [17]. The symbiotic 
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system CMM with this constructor module included 
generates the following formal specification for predicate <: 

(15) x < y ⇔ { ∃z y = S(x + z) }. 
With this new definition (*) is transformed into 

∀a ∀n ∃z { S(0) < a ⇒ exp(a,n) = S(n + z) }.     (**) 
Note that this last formula is a specification formula by 

introducing the existentially quantified variable z. CMM is 
then able to prove it (without interaction with the user). 
CMM generates and proves autonomously the following 
lemmas: 
L1. ∀ a ∀n1 ∀b ∃z1 { S(0) < a ⇒ (n1 + b)*a + a = SS(n1 + 

z1) }. 

L2. ∀ a ∀b ∃z2 { S(0) < a ⇒ b*a + a = SS(z2) }. 

L3. ∀ a ∃z7 { S(0) < a ⇒ a = SS(z7) }. 

L4. ∀ a ∀m ∀d ∃z5 { S(0) < a ⇒ (m + d) + a = S(m + z5) }. 

L5. ∀ a ∀d ∃z3 { S(0) < a ⇒ d + a = S(z3) }. 

L6. ∀ a ∃z4 { S(0) < a ⇒ a = S(z4) }. 
This example illustrates all three points (a), (b), (c) of 

Cartesian Intuitionism in that, when meeting failure, a need 
for a complementary constructor transforming a recursive 
definition of a predicate into a non-recursive equivalent is 
informally specified. Then, the successful formalized design 
of this constructor enlarges the power of CMM and thus 
modifies the whole CMM which is ready, when necessary, to 
be once again modified. 

The basic constructor of CMM is presented in [16] and 
the other constructors of CMM specified so far are described 
in our publications up to 2001. Some of these constructors 
were implemented in the system Proofs Educed by 
Constructive Matching for Synthesis (PRECOMAS) [14]. 

VI.  A FEW EPISTEMOLOGICAL REMARKS  

Accepting to use Cartesian Intuitionism as a way of 
creation of some complex systems (we exemplified here a 
Program Synthesis system) requires a deep transformation of 
our attitude together with an inevitable shift in thinking, 
because of changes, due to the new context, in vocabulary 
meaning, resonances and connotations. Newtonian theories 
and systems provide a kind of comfortable environment by 
the identified boundaries existing between each component 
of their architecture. Therefore, it is true that losing this 
comfort by accessing the new context we define here 
requires from the scientists a large change in their behaviour. 
In this, a Cartesian system requires from researchers the 
acceptance of open-ended research with its conceptual 
switches and a new propensity to deal with completeness and 
incompleteness. In a sense, such an open-ended 
‘technological’ approach seems to be a natural answer to the 
open-ended theory of natural numbers and the open-ended 
‘bunch’ of desires expressed as program synthesis problems. 

Until now, the main technique used in the direction of 
such an opening to intuition has been carried out by the 
brainstorming techniques, in which several subjects relax 
enough to build unexpected mind connexions that might 
bring a new idea to the fore. In a sense, brainstorming could 
be an ideal way to define as precisely as possible what is the 

starting, informal, specification of the problem. The 
following steps of our proposal are still based on something 
similar to brainstorming, but the mind of each subject has to 
focus on ideas explicitly related to the informal specification 
of the problem. Ideas to find a path from informal to formal 
specification, then to solution, are triggered by each new 
problem arising at each failure to succeed in proving a step 
towards solution. In that sense, the collaboration between the 
members of a team working on the problem at hand, is 
enriched and much more focused by this problem than it is 
during a brainstorming session. 

VII.  CONCLUSION 

Any design of a new complex system obviously requires, 
during its creative process, that its authors might be able to 
generate new ideas. In the field of program synthesis, our 
approach can be looked upon as a ‘generator of new ideas’. 
We thus somewhat try to contradict Karl Popper who claims 
in [25] that “there is no such a thing as a logical method of 
having new ideas, or a logical reconstruction of this 
process.” Our opinion is that Popper restricts here logical 
thinking to the linear one and his claim is perhaps valid in 
such a framework. On the contrary, our experience shows 
that Cartesian Intuitionism with its recursive features 
provides a method for having new ideas (and ones that are 
‘useful-for-solving-the-problem-at-hand)’ as well as a model 
for a reconstruction of creative process, as we illustrated it in 
the study of creation of the Peano’s axioms and its 
application to the design of an autonomous PS system. 

By this paper, we have progressed in the direction of an 
adequate formalization of the first fundamental challenge 
met, as pointed out in [16], in the oscillatory design of the 
recursive system, namely, the challenge of understanding the 
symbiotic interrelation between a recursive whole, like N or 
CMM, and its parts (constructors) like S from N or 
“Synthesis of Formal Specifications of Predicates” from 
CMM. Understanding this first challenge will help to 
accelerate our future work on the three remaining problems 
described in [16], namely the ‘chameleon’ like behaviour of 
Cartesian systems, which are simultaneously static/dynamic, 
finite/infinite and complete/incomplete. 

The ideas explained in the present paper are an 
illustration of our methodology that we plan to enlarge to 
problem-solving in general, not only to program synthesis. 
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