
HAL Id: hal-00955846
https://inria.hal.science/hal-00955846

Submitted on 5 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Cartesian Methodology for an Autonomous Program
Synthesis System

Marta Franova

To cite this version:
Marta Franova. A Cartesian Methodology for an Autonomous Program Synthesis System. ICONS
2014, The Ninth International Conference on Systems, IARIA, Feb 2014, Nice, France. pp.22-27,
�10.000/ISBN978-1-61208-319-3�. �hal-00955846�

https://inria.hal.science/hal-00955846
https://hal.archives-ouvertes.fr

A Cartesian Methodology for an Autonomous Program Synthesis System

Marta Franova
LRI, UMR8623 du CNRS & INRIA Saclay

 Bât. 660, Orsay, France
mf@lri.fr

Abstract— In this paper, we present the main difference
between Newtonian and Cartesian approaches to scientific
creativity when related to Program Synthesis (PS). The main
contribution of the paper is a thorough discussion on the
creative building of a theorem prover. We illustrate these ideas
by an analysis of Peano’s axioms defining the set of non
negative integers, from the point of view of creativity. This
analysis is then applied to the more complex case of the general
framework for our own ‘Constructive Matching Method ology’
(CMM) as a Cartesian approach to the creation of an
autonomous theorem prover for PS.

Keywords-program synthesis systems; methodology;
Constructive Matching methodology; creativity, symbiosis

I. INTRODUCTION

Automatic construction of programs is obviously a
desirable goal. There are two main approaches to tackle with
this task, namely inductive and deductive. In this paper, we
are interested in the deductive approach to Program
Synthesis (PS) introduced by Manna and Waldinger in the
eighties [22] and followed by many authors, for instance [4],
[5], [8], [10], [13], [21], [23], [26]. This problem is however
undecidable as a consequence of Gödel’s Theorems [19]. In
this paper, we shall present an attempt to, as much as
possible, approximate the automatization of the deductive
approach to PS by introducing the conceptual switch of
‘Cartesian Intuitionism’, defined by Franova [16] and
informally described in the book Franova [15].

This approach is, from an epistemological point of view,
an interesting alternative and a complement to the more
formal Newtonian approaches because it enables to handle
informal specifications. Nevertheless, it is still too soon to
compare these approaches on the basis of their relative
performance. From a practical point of view, in building
what we call Cartesian Intuitionism, we try to open the way
to a creative approach that provides a frame of thought to the
user of a theorem prover in the process of recovering from a
failure.

Before going into the details of the structure of the paper,
let us stress the role of Section IV of this paper. This Section
contains an example illustrating and underlining the deep gap
between creating a set of axioms, that is to say, Cartesian
creation of these axioms and making use of a given set of
axioms, that is to say Newtonian construction of a proof.

In Section IV, we illustrate Cartesian creation of the
Newtonian theory of the non negative integers build using

Peano’s axiom. The idea is that each of its 5 axioms depends
on the other ones to be justified. Besides, modifying one
axiom modifies the others as we shall then illustrate. Another
obvious example of Cartesian creativity, though at a much
higher level, is provided by Lobachevski’s geometry.
Euclidian geometry is a very efficient Newtonian system. It
becomes Cartesian when you try to play with the axiom
relative to the parallels, where you ‘create’ universes where
parallels in the same plane can cross once, several times, all
cross at the same point or not etc. The creative aspects we
deal with here are akin to these two examples: Our axiomatic
system has to invent new axioms each time it meets a failure.

The paper is structured as follows. In Section II, we recall
the formulation of the deductive approach to PS. In Section
III, we recall the main features of Newtonian and Cartesian
approaches to scientific creativity related to PS. In particular,
we shall recall the basic notions of Cartesian intuitionism.
Section IV has been already summarized. We shall devote
Section V to the description of our Constructive Matching
Methodology (CMM) in the light of Cartesian Intuitionism.
In Section VI, we present a few epistemological remarks.

II. PROGRAM SYNTHESIS – DEFINITION OF THE PROBLEM

By program synthesis we call here the deductive
approach to automatic construction of recursive programs
introduced by Manna and Waldinger [22]. This approach
starts with a specification formula of the form ∀ x ∃ z {P(x)
⇒ R(x,z)}, where x is a vector of input variables, z is a
vector of output variables, P(x) is the input condition. R(x,z)
is a quantifiers-free formula and expresses the input-output
relation, i.e., what the synthesized program should do. A
proof by recursion of this formula, when successful, provides
a program for the Skolem function sf that represents this
program, i.e., R(x,sf(x)) holds for all x such that P(x) is
verified. In other words, program synthesis transforms the
problem of program construction into a particular theorem
proving problem. The role of the deductive approach is thus
to build an inductive theorem prover specialized for
specification formulas. There are two main problems with
respect to this role:

1. Treatment of strategic aspects of inductive theorem
proving system specialized for specification
formulae.

We have illustrated this first problem on a simple
specification theorem (a computation of the last element of a
list) in [16] and a complex example (synthesis of

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Ackermann’s function defined with respect to the second
argument) is presented in [12].

2. Treatment of strategic aspects of creativity related to
the design of such theorem prover.

The present paper is concerned with this second problem,
that is, the one of building a system able to perform program
synthesis. Strategic aspect can seldom been efficiently
formalized. We moreover deal with creativity, the formal
aspects of which start being explored. It is obviously too
soon to present a general (Newtonian) theory of (Cartesian)
creativity in the usual style of lemmas, theorems etc.; thus
the nature of this paper is more epistemological than
axiomatic.

III. NEWTONIAN AND CARTESIAN APPROACHES TO PS

In the previous Section, we have mentioned that we are
here interested in the creative process of construction of an
inductive theorem prover. This prover has to be specialized
in specification formulae. There are two main styles in this
creative process. For particular reasons presented in [16], we
call ‘Newtonian’ the standard approach and ‘Cartesian’ the
non-classical one. In [16], we have presented in detail the
above two styles. In this Section, we shall recall the main
features necessary for understanding the present
communication.

A. Newtonian Approach

The specialists in the Newtonian approach to PS build
their own theorem prover, one based on a logic of sequential
research. Classically, the reference system of any theorem
proving system consists in a set of axioms, rules of inference
and control mechanisms devoted to finding a recursive proof
for the specification formula. In the Newtonian approach, the
various blocks composing the reference system are a
composition of some tools chosen among the whole set of all
existing tools. In the case where an author introduces a new
block he/she invented him/herself, then this new block must
be coherent with the existing tools. In other words, more
formally, Newtonian approach considers creativity as a finite
linear sequence:

beginning
advancement-1
advancement-2
…
advancement-n
end.

In this sense, Newtonian creativity is similar to
essentialism within the frame of logics as defined by J.Y.
Girard in [18].

Since this approach is based on standard mathematical
knowledge, it inevitably inherits the negative results of Kurt
Gödel [19]. The results of Gödel are said to be negative
because they show that the objective of PS, as it is
formulated in beginning, cannot lead to a successful end of
the task in the classical framework. This happens because the
classical approach focalizes on the problem

∃ formal framework
in which ∀ specification formula has a solution.

Gödel’s results show the impossibility to define a formal
logical framework, containing the natural numbers, allowing
to deal with the automated resolution (confirm or counter) of
specifications given in a general way. This is why
Newtonian approaches react by placing themselves inside
user-dependent theorem proving assistants, such as ACL2
[6], the system RRL [20], the system NuPRL [9], the Oyster-
Clam system [7], the extensions of ISABELLE [24], the
system COQ [3], Matita Proof Assistant [1] and Otter-
Lambda [2].

B. Cartesian Approach

We have developed an alternative to this classical
approach by taking into account the creativity necessary for
designing a PS system from the point of view of what we
call Cartesian Intuitionism [16]. This non-classical creativity

(a) focalises on the problem: {∀ specification formula
∃ formal framework in which the given
specification formula has a solution}

(b) oscillates between the problems {∃ framework ∀
specification} and {∀ specification ∃ framework}

(c) considers the creativity process in its recursive
cyclic version given by the scheme

beginning end

mean
where the arrow means “steers”.

These three points give to Cartesian Intuitionism the
feature of a combination of what is called essentialism and
existentialism within the frame of logics by Girard [18].

Points (a), (b), and (c) together mean that Cartesian
approach to PS is based on a logic of recursive science where
the reference system of the problem and the milestones of
construction of the solution (i.e., the definitions and the rules
of inference of a given specification formula) are formulated
hand in hand with the development of the solution.
Moreover, the exact demarcation of the reference system and
the milestones of construction is the final stage of the
process, and it is also a part of the solution. It follows that
Cartesian approach specifies in an informal way the purpose
to be reached, by a necessarily informal formulation of the
reference system. For instance, CMM specifies the purpose
of PS informally by the sentence: “Create a custom-made
mechanism for proving specification formulae that
automates PS as much as possible.” We shall say more about
our application of Cartesian approach to PS later in Section
V, because we need first to clarify the model of creation for
CMM in the following Section.

IV. NEWTONIAN CONSTRUCTION VERSUS CARTESIAN

CREATION

In this Section, we shall be interested in the set of natural
numbers N, seen here as a creation model for particular
complex systems. More precisely, we shall point out the
difference between the use and the creation of Peano’s
axioms. Peano’s axioms define the arithmetic properties of
natural numbers N. These axioms include a constant symbol

23Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

0 and unary function symbol S. These axioms are usually
used to build formal proofs about natural numbers. Our
presentation does not deal with this topic, but with the one of
reasoning about the construction of these axioms, that is the
creation process involved in their building.

Supposing that the membership relation “∈ ” and the
equality “=” are already defined, the basic Peano’s axioms
read:

(A1) 0 ∈ N.
(A2) if n ∈ N then S(n) ∈ N.
(A3) for all n ∈ N, S(n) ≠ 0.
(A4) for all n, m ∈ N, if S(n) = S(m), then n = m.
(A5) if M is a set such that

• 0 ∈ M, and
• for every n ∈ N, if n ∈ M then S(n) ∈ M

 then M contains every natural number.
We shall tackle here, in this Section, with the difference

between the use and the creation of these five axioms. To
this purpose, we need to precisely specify the difference
between synergy and symbiosis.

A. Synergistical Construction

 An object is constructed synergistically when it can be
considered as a result of the application of some specific
tools from an existing tool-box, that is all the tools that have
been developed in all scientific domains beforehand, for
various purposes. These tools are not built in such a way that
one calls another to solve one of its problems before this one
has finished its computations. That is, tool B can call on tool
A in one way only: the input of B contains a part of A
computations, once A computations have been all achieved.
It follows that these tools must be used independently of
each other for the construction of other objects. During the
construction process they do not lose their properties.

B. Symbiotical Construction

In contrast to this, an object is constructed symbiotically
when its parts, maybe seemingly independent, have, during
the construction process, no meaning as isolated entities and
a slight change of one part influences the others and the
whole as we illustrate later.

The main point we want to underline about Peano’s
axioms is that their use is synergetic, while their
construction process is symbiotic. In other words, when
using them, we can use several axioms as being independent
entities and the constructing elements 0, S, and N can be
considered as isolated from each other, though they are
interdependent elements as show (A1) and (A2). The
following example will show in which way Peano’s axioms
construction process is of symbiotic nature.

Let us first consider axiom (A1), which deals with 0 and
N. This first axiom, however, does not say what is the full
meaning neither of 0 nor of N. In particular, from this axiom
we cannot conclude that 0 is a basic element and that N is the
final object we want to define. The axiom (A1) expresses
only an interdependence between two symbols 0 and N. The
symbol ∈, does not tell more than 0 is an “element” and N is
one of sets to which this element belongs. There is no

difference, apart substitution, between (A1) and (B1): “rose
∈ garden”. This means that the creator of Peano’s axioms
has already in mind a “vision” or an “informal specification”
of what 0 and N mean for him in this first axiom. In other
words, writing this first axiom, the axiom’s creator
intuitively knows what 0 and N will be once their description
will be completed, i.e., when all the necessary (in this case
five) axioms will be provided. In the creator’s mind, the first
axiom contains implicitly and intuitively all the remaining
axioms and all the axioms are constructed from his/her
intuitive vision of the “whole”, i.e., N. Therefore, 0 and S do
not belong to an already given tool-box and the meaning of
0, S and N in the construction process is custom-made.
Moreover, 0, S, and N are symbiotic during the construction
process and they are not synergetic parts. During the
construction process, N steers the realization of 0 and S and
vice versa, they cannot be considered as isolated already
known elements. We shall present later an example
illustrating this symbiotic character; but we now need at first
to introduce some more notions.

C. Cartesian Creation

N is constructed with the help of three “elements”,
namely 0, S and N itself. Note that N self-reference is
already acknowledged as a constructive recursive ‘trick’.
These construction parts are usually named ‘the
constructors’. We have already mentioned that these parts
are symbiotic during the construction process, while when
using the Peano’s axioms for reasoning, we may consider
them synergetic “par la pensée” (as Descartes puts it). In the
following, instead of ‘construction’ we shall call this process
‘Cartesian creation’ in tribute to Descartes’ §62 of The
Principles of philosophy [11]. We shall use the following
notation:

< A + B > = C,
where A, B are constructors and C is the created “whole” for
this kind of a symbiotic Cartesian creation. This defines N in
the following way:

< 0 + S + N > = N.
Now, we can illustrate the symbiotic character of the

constructors 0, S and N. Let us consider Peano’s axioms
without (A3). In such a case we have the liberty to suppose
that there exists n ∈ N such that S(n) = 0. Let us suppose that
S(S(0)) is such an element. We have then S(S(S(0))) = 0. Let
us call (B3) this hypothesis. Then, (A1), (A2), (B3), (A4)
and (A5) constitute a meaningful definition of the set that
contains three elements, namely 0, S(0) and S(S(0)). This
new axiomatic definition defines a set, N3, that is finite and
thus is different from the infinite set N defined by Peano’s
axioms. In other words, a little change in a property of one
constructor altered the properties of all the constructors,
including N which changed into N3. This is not the case in a
synergic construction, where a change of one construction
module may influence the behaviour of the whole but has no
direct effect on the other modules. This explains why we so
much stress the difference between symbiotic Cartesian
creation and synergetic Newtonian construction. Once a
symbiotic creation of a whole is completed, we may think of
the constructors as being “unconnected” synergetic elements.

24Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

We just have shown that this thinking is not valid during the
creation process. This is why there is also a difference
between a creation process and the use of the completed
whole created by the same process.

An interesting feature of a symbiotic creation is that one
cannot produce a sample or “architectural” miniature before
the whole creation process is completed. Moreover, partial
results are often incomprehensible outside the creation
process which works mainly with informally specified
problems that must be simultaneously solved. The
drawbacks we just exposed must be one of the reasons why
Cartesian creation is hardly reported in the scientific
communications that concentrate on the result of the
creation, not on their creative process itself. Researchers
seem to prefer tool-box Newtonian progressive construction
which provides the security of familiarity with such linear or
modular processes. This may also explain why our original
Cartesian approach is not used in the research on Program
Synthesis.

Summarizing this Section, we can say that Cartesian
creation focuses on building a system, a whole, by
progressively inventing symbiotic constructors. Such a
progressive process is possible since the first constructors
and the whole are described by a ‘mere’ informal
specification, as we shall show in the next Section. The
standard Newtonian research is not accustomed to such an
informal goal specification and it usually gathers already
existing mechanisms that have been certainly not custom-
designed for the given goal. This choice leads, during the
construction process, to new problems, more often related to
the chosen basic tools than to the given goal. These new
problems ask for a new search for already existing tools and
to attempts for adapting them to the given goal, a process
that tends to fail when it is completely automated. In other
words, in Cartesian creation, the basic tools, i.e., constructors
and the whole system are custom-made, while in Newtonian
construction, the basic words are “choice” and “adaptation”
of already available tools.

V. CMM IN THE LIGHT OF CARTESIAN INTUITIONISM

The basic principle of Newtonian PS system is the use of
a fixed set of specific strategies in order to solve the
problems that are submitted to it. In case of failure, the user
is requested to provide lemmas or axioms that lead to
success.

The basic principle of Cartesian PS system is also the use
of a specific strategy defined by the axioms upon which the
system is built. But this is true only as long as the system
meets no failure. In case of failure, we build a new PS
system possibly with a new solving strategy. We already
illustrated such behaviour by building the pseudo-Peano
system by replacing (A3) by (B3) and N by N3. If this kind
of incomplete natural numbers is used to prove a theorem
containing the term, say S(S(S(S(0)))), the ‘synthesis’ will
fail. In a Newtonian approach, the user would be asked for a
lemma specific to S(S(S(S(0)))) that enables a success. In
such a case our approach would propose to modify the
system of axioms by changing (B3) and N3. We fully agree
that, in this particular case, a human feels the needed

modification as being trivial and would rather suggest to
enlarge the solution to introducing N itself. See below a
modification that is less easy to find.

Let us now provide a more complex example that
illustrates a situation where modifying system of axioms
defining PS mechanism is not trivial.

Newtonian system called Otter-Lambda is presented by
Beeson [2], together with several examples of its execution.
We have chosen among them a formula

∀ a ∀n { S(0) < a ⇒ n < exp(a,n) } (*)
that the Otter-Lambda system fails to prove when the basic
information relative to (*) is given as a recursive definition
of the exponentiation function exp (with respect to the
second argument):

(1) exp(u,0) = s(0)

(2) exp(u,S(v)) = u*exp(u,v)
of the addition and of the multiplication with respect to the
first argument:

(3) 0 + u = u

(4) S(v) + u = S(v + u)

(5) 0 * u = 0

(6) S(v) * u = (v * u) + u
 The definition of < is also recursive and given as:
(7) 0 < y, if y ≠ 0

(8) S(v) < y , if v < y & y ≠ S(v)
Since the Otter-Lambda system fails, it requests some

help from its human user. In [2], the user is able to provide
the following lemmas that enable Otter-Lambda to complete
the proof of (*).

(9) not(u<v) or (x*u < x*v) or not(0 < x)

(10) (x < y) or (y ≤ x)

(11) not(y ≤ x) or not(x < y)

(12) not(u < v) or not (v ≤ w) or (u < v)

(13) not(S(0) < z) or not(0 < y) or (S(y) ≤ z*y)

(14) 0 + x = x
We applied our Cartesian approach to the same problem,

which does not suggest to get any user’s help. The system
determines n as the induction variable, since it occurs in
recursive arguments of all the functions and predicates and
the other possible candidate variable a occurs in the non-
recursive first argument of the function exp which would
stop the evaluation process in an inductive proof.
Nevertheless, our system notices at once a probable source of
trouble: the predicate < is recursively defined on its first
argument, while, in (*), the induction variable n occurs also
in second position of the predicate <. At this stage, the
system could suggest the user to provide a definition of <
with respect to both argument (this would actually fail), or to
the second argument (this would fail as well), or else, a non
recursive definition (that would succeed). As already
claimed, our system does not call on its user, and it will
proceed by calling a custom-designed constructor module we
named “Synthesis of Formal Specifications of Predicates”
described by Franova and Popelinsky [17]. The symbiotic

25Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

system CMM with this constructor module included
generates the following formal specification for predicate <:

(15) x < y ⇔ { ∃z y = S(x + z) }.
With this new definition (*) is transformed into

∀a ∀n ∃z { S(0) < a ⇒ exp(a,n) = S(n + z) }. (**)
Note that this last formula is a specification formula by

introducing the existentially quantified variable z. CMM is
then able to prove it (without interaction with the user).
CMM generates and proves autonomously the following
lemmas:
L1. ∀ a ∀n1 ∀b ∃z1 { S(0) < a ⇒ (n1 + b)*a + a = SS(n1 +

z1) }.

L2. ∀ a ∀b ∃z2 { S(0) < a ⇒ b*a + a = SS(z2) }.

L3. ∀ a ∃z7 { S(0) < a ⇒ a = SS(z7) }.

L4. ∀ a ∀m ∀d ∃z5 { S(0) < a ⇒ (m + d) + a = S(m + z5) }.

L5. ∀ a ∀d ∃z3 { S(0) < a ⇒ d + a = S(z3) }.

L6. ∀ a ∃z4 { S(0) < a ⇒ a = S(z4) }.
This example illustrates all three points (a), (b), (c) of

Cartesian Intuitionism in that, when meeting failure, a need
for a complementary constructor transforming a recursive
definition of a predicate into a non-recursive equivalent is
informally specified. Then, the successful formalized design
of this constructor enlarges the power of CMM and thus
modifies the whole CMM which is ready, when necessary, to
be once again modified.

The basic constructor of CMM is presented in [16] and
the other constructors of CMM specified so far are described
in our publications up to 2001. Some of these constructors
were implemented in the system Proofs Educed by
Constructive Matching for Synthesis (PRECOMAS) [14].

VI. A FEW EPISTEMOLOGICAL REMARKS

Accepting to use Cartesian Intuitionism as a way of
creation of some complex systems (we exemplified here a
Program Synthesis system) requires a deep transformation of
our attitude together with an inevitable shift in thinking,
because of changes, due to the new context, in vocabulary
meaning, resonances and connotations. Newtonian theories
and systems provide a kind of comfortable environment by
the identified boundaries existing between each component
of their architecture. Therefore, it is true that losing this
comfort by accessing the new context we define here
requires from the scientists a large change in their behaviour.
In this, a Cartesian system requires from researchers the
acceptance of open-ended research with its conceptual
switches and a new propensity to deal with completeness and
incompleteness. In a sense, such an open-ended
‘technological’ approach seems to be a natural answer to the
open-ended theory of natural numbers and the open-ended
‘bunch’ of desires expressed as program synthesis problems.

Until now, the main technique used in the direction of
such an opening to intuition has been carried out by the
brainstorming techniques, in which several subjects relax
enough to build unexpected mind connexions that might
bring a new idea to the fore. In a sense, brainstorming could
be an ideal way to define as precisely as possible what is the

starting, informal, specification of the problem. The
following steps of our proposal are still based on something
similar to brainstorming, but the mind of each subject has to
focus on ideas explicitly related to the informal specification
of the problem. Ideas to find a path from informal to formal
specification, then to solution, are triggered by each new
problem arising at each failure to succeed in proving a step
towards solution. In that sense, the collaboration between the
members of a team working on the problem at hand, is
enriched and much more focused by this problem than it is
during a brainstorming session.

VII. CONCLUSION

Any design of a new complex system obviously requires,
during its creative process, that its authors might be able to
generate new ideas. In the field of program synthesis, our
approach can be looked upon as a ‘generator of new ideas’.
We thus somewhat try to contradict Karl Popper who claims
in [25] that “there is no such a thing as a logical method of
having new ideas, or a logical reconstruction of this
process.” Our opinion is that Popper restricts here logical
thinking to the linear one and his claim is perhaps valid in
such a framework. On the contrary, our experience shows
that Cartesian Intuitionism with its recursive features
provides a method for having new ideas (and ones that are
‘useful-for-solving-the-problem-at-hand)’ as well as a model
for a reconstruction of creative process, as we illustrated it in
the study of creation of the Peano’s axioms and its
application to the design of an autonomous PS system.

By this paper, we have progressed in the direction of an
adequate formalization of the first fundamental challenge
met, as pointed out in [16], in the oscillatory design of the
recursive system, namely, the challenge of understanding the
symbiotic interrelation between a recursive whole, like N or
CMM, and its parts (constructors) like S from N or
“Synthesis of Formal Specifications of Predicates” from
CMM. Understanding this first challenge will help to
accelerate our future work on the three remaining problems
described in [16], namely the ‘chameleon’ like behaviour of
Cartesian systems, which are simultaneously static/dynamic,
finite/infinite and complete/incomplete.

The ideas explained in the present paper are an
illustration of our methodology that we plan to enlarge to
problem-solving in general, not only to program synthesis.

ACKNOWLEDGMENT

I would like to express my warmest thanks to Michèle
Sebag, my research group director at L.R.I., and Yves
Kodratoff who helped me to express the ideas presented in
this paper. Thanks to Veronique Benzaken for her moral
support. The referees’ comments have been very helpful in
improving our presentation.

REFERENCES

[1] A. Asperti, C. S. Coen, E. Tassi, and S. Zacchiroli, “User

Interaction with the Matita Proof Assistant,” Journal of
Automated Reasoning, August 2007, vol. 39, Issue 2, pp. 109-
139.

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

[2] M. Beeson, “Mathematical Induction in Otter-Lambda,”
Journal of Automated Reasoning, April 2006, vol. 36, Issue 4,
pp. 311-344.

[3] Y. Bertot and P. Casteran, Interactive Theorem Proving And
Program Development - Coq'art: The Calculus Of Inductive
Constructions, Springer-Verlag, 2004.

[4] W. Bibel, “On Syntax-Directed, Semantic-Supported Program
Synthesis,” Artificial Intelligence 14, 1980, pp. 243-261.

[5] S. Biundo and F. Zboray, “Automated Induction Proofs using
methods of program synthesis,” Computers and Artificial
Intelligence, 3, No. 6, 1984, pp. 473-481.

[6] R. S. Boyer and J S. Moore, A Computational Logic
Handbook, Academic Press, Inc., 1988.

[7] A. Bundy, F. Van Harnelen, C. Horn, and A. Smaill, “The
Oyster–Clam System,” in M.E. Stickel, (ed.) 10th
International Conference on Automated Deduction, vol. 449
of Lecture Notes in Artificial Intelligence, Springer 1990, pp.
647–648.

[8] J. Chazarain and S. Muller, “Automated Synthesis of
Recursive Programs from a ‘forall’ ‘exists’ Logical
Specification,” Journal of Automated Reasoning, October
1998, vol. 21, Issue 2, pp. 233-275.

[9] R. L. Constable, Implementing Mathematics with the Nuprl
Proof Development System, Prentice-Hall, Inc., Englewood
Clifs, New Jersey, 1986.

[10] N. Dershowitz and U.S. Reddy, “Deductive and Inductive
Synthesis of Equational Programs,” JSC vol. 15, Nos. 5 and 6,
1993, pp. 463-466.

[11] R. Descartes “Œuvres philosophiques” (3 vol.). Edition de
F.Alquié. T. 3; Classiques Garnier, Bordas, 1988.

[12] M. Franova, “A construction of a definition recursive with
respect to the second variable for the Ackermann’s function”,
Research Report No.1511, L.R.I., 2009.

[13] M. Franova, “Program Synthesis and Constructive proofs
Obtained by Beth's tableaux,” in R. Trappl, (ed), Cybernetics
and System Research vol. 2, North-Holland, Amsterdam,
1984, pp. 715-720.

[14] M. Franova, “PRECOMAS - An Implementation of
Constructive Matching Methodology,” Proceedings of
ISSAC'90, ACM, New York, 1990, pp. 16-23.

[15] M. Franova, Créativité Formelle: Méthode et Pratique -
Conception des systèmes ‘informatiques’ complexes et Brevet
Épistémologique , (Formal Creativity: Method and Pratics –

Conception of Complex ‘Informatics’ Systems and
Epistemological Patent) Publibook, 2008.

[16] M. Franova, “Cartesian Intuitionism for Program Synthesis,”
in S. Shimizu, T. Bosomaier (eds.) , Cognitive 2013, The
Fifth International Conference on Advanced Cognitive
Technologies and Applications, www.thinkmind.org, ISBN :
978-1-61208-273-8, 2013, pp. 102-107.

[17] M. Franova and L. Popelinsky, “Synthesis of formal
specifications of predicates: Why and How?,” in R. Trappl,
(ed.), Cybernetics and Systems 2000, proc. of the Fifteenth
European Meeting on Cybernetics and Systems Research, vol.
1, vol. 2, Austrian Society for Cybernetics Studies, 2000, pp.
739-744.

[18] J. Y. Girard, Le Point Aveugle I - Cours de Logique - Vers la
Perfection, (The Blind Spot I – The Course on Logics –
Towards the Perfection) Hermann, 2006.

[19] K. Gödel, “Some metamathematical results on completeness
and consistency, On formally undecidable propositions of
Principia Mathematica and related systems I, and On
completeness and consistency,” in J. van Heijenoort, From
Frege to Godel, A source book in mathematical logic, 1879-
1931, Harvard University Press, Cambridge, Massachusets,
1967, pp. 592-618.

[20] D. Kapur, “An overview of Rewrite Rule Laboratory (RRL),”
J. Comput. Math. Appl. 29(2), 1995, pp. 91–114.

[21] Y. Korukhova, “An approach to automatic deductive
synthesis of functional programs,” Annals of Mathematics
and Artificial Intelligence, August 2007, vol. 50, Issue 3-4, pp
255-271.

[22] Z. Manna and R.Waldinger, “A Deductive Approach to
Program Synthesis,” ACM Transactions on Programming
Languages and Systems, vol. 2., No.1, January, 1980, pp. 90-
121.

[23] C. Paulin-Mohring and B. Werner, “Synthesis of ML
programs in the system Coq,” Journal of Symbolic
Computation, vol. 15, Issues 5–6, May–June 1993, pp. 607–
640.

[24] L. C. Paulson, “The foundation of a generic theorem prover,”
Journal of Automated Reasoning, September 1989, vol. 5,
Issue 3, pp. 363-397.

[25] K. Popper, The logic of scientific discovery, Harper, 1968.
[26] D. R. Smith, “Top-Down Synthesis of Simple Divide and

Conquer Algorithm,” Artificial Intelligence, vol. 27, no. 1,
1985, pp. 43-96.

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

