Y. Achdou, S. Oudet, and N. Tchou, Hamilton???Jacobi equations for optimal control on junctions and networks, ESAIM: Control, Optimisation and Calculus of Variations, vol.21, issue.3, 2014.
DOI : 10.1051/cocv/2014054

URL : https://hal.archives-ouvertes.fr/hal-00847210

A. Altarovici, O. Bokanowski, and H. Zidani, A general Hamilton-Jacobi framework for nonlinear state-constrained control problems. ESAIM: Control, Optimisation and Calculus of Variations, pp.337-357, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00653337

J. Aubin and H. Frankowska, Set-valued analysis, 1990.
DOI : 10.1007/978-1-4612-1576-9_5

M. Bardi and I. Capuzzo-dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi- Bellman equations. Systems & Control: Foundations & Applications, Birkhäuser Boston Inc, 1997.

G. Barles, A. Briani, and E. Chasseigne, A Bellman approach for two-domains optimal control problems in R N , ESAIM: Control, Optimisation and Calculus of Variations, pp.710-739, 2013.

G. Barles, A. Briani, and E. Chasseigne, A Bellman approach for regional optimal control problems in R N , with A. Briani and G, Barles, SIAM Journal on Control and Optimization, 2014.

R. C. Barnard and P. R. Wolenski, Flow invariance on stratified domains. Set-Valued and Variational Analysis, pp.377-403, 2013.

E. N. Barron and R. Jensen, Semicontinuous Viscosity Solutions For Hamilton???Jacobi Equations With Convex Hamiltonians, Communications in Partial Differential Equations, vol.10, issue.12, pp.1713-1742, 1990.
DOI : 10.1007/BF02765025

P. Bettiol and H. Frankowska, Regularity of solution maps of differential inclusions under state constraints. Set-Valued Analysis, pp.21-45, 2007.

P. Bettiol and H. Frankowska, Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete and Continuous Dynamical Systems-Series A, pp.1-26, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00626147

P. Bettiol, H. Frankowska, and R. B. , <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi>L</mml:mi><mml:mo>???</mml:mo></mml:msup></mml:math> estimates on trajectories confined to a closed subset, Journal of Differential Equations, vol.252, issue.2, pp.1912-1933, 2012.
DOI : 10.1016/j.jde.2011.09.007

A. Blanc, Deterministic Exit Time Control Problems With Discontinuous Exit costs, SIAM Journal on Control and Optimization, vol.35, issue.2, pp.399-434, 1997.
DOI : 10.1137/S0363012994267340

O. Bokanowski, N. Forcadel, and H. Zidani, Deterministic state-constrained optimal control problems without controllability assumptions. ESAIM: Control, Optimisation and Calculus of Variations, pp.995-1015, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00415953

I. Capuzzo-dolcetta and P. Lions, Hamilton-Jacobi equations with state constraints, Transactions of the American Mathematical Society, vol.318, issue.2, pp.643-683, 1990.
DOI : 10.1090/S0002-9947-1990-0951880-0

P. Cardaliaguet, M. Quincampoix, and P. Saint-pierre, Optimal times for constrained nonlinear control problems without local controllability, Applied Mathematics & Optimization, vol.8, issue.2, pp.21-42, 1997.
DOI : 10.1007/BF02683336

F. Clarke and R. Stern, Hamilton-jacobi characterization of the state constrained value. Nonlinear Analysis: Theory, Methods & Applications, pp.725-734, 2005.

M. Crandall and P. Lions, Viscosity solutions of Hamilton Jacobi equations, pp.1-42, 1983.

N. Forcadel, Z. Rao, and H. Zidani, State-Constrained Optimal Control Problems of Impulsive Differential Equations, Applied Mathematics & Optimization, vol.46, issue.6, pp.1-19, 2013.
DOI : 10.1007/s00245-013-9193-5

URL : https://hal.archives-ouvertes.fr/hal-00653671

H. Frankowska and M. Mazzola, Discontinuous solutions of Hamilton???Jacobi???Bellman equation under state constraints, Calculus of Variations and Partial Differential Equations, vol.22, issue.3-4, pp.3-4725, 2013.
DOI : 10.1007/s00526-012-0501-8

URL : https://hal.archives-ouvertes.fr/hal-00710717

H. Frankowska and S. Plaskacz, Semicontinuous Solutions of Hamilton???Jacobi???Bellman Equations with Degenerate State Constraints, Journal of Mathematical Analysis and Applications, vol.251, issue.2, pp.818-838, 2000.
DOI : 10.1006/jmaa.2000.7070

H. Frankowska and R. B. Vinter, Existence of Neighboring Feasible Trajectories: Applications to Dynamic Programming for State-Constrained Optimal Control Problems, Journal of Optimization Theory and Applications, vol.35, issue.1, pp.20-40, 2000.
DOI : 10.1023/A:1004668504089

C. Imbert, R. Monneau, H. Zidani, and . Hamilton, Jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, pp.129-166, 2013.

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks
URL : https://hal.archives-ouvertes.fr/hal-00832545

H. Ishii and S. Koike, A New Formulation of State Constraint Problems for First-Order PDEs, SIAM Journal on Control and Optimization, vol.34, issue.2, pp.554-571, 1996.
DOI : 10.1137/S0363012993250268

V. Y. Kaloshin, A geometric proof of the existence of whitney stratifications, Mosc. Math. J, vol.5, issue.1, pp.125-133, 2005.

G. Leoni, A first course in Sobolev spaces, American Mathematical Soc, vol.105, 2009.
DOI : 10.1090/gsm/105

P. Loreti, Some Properties of Constrained Viscosity Solutions of Hamilton???Jacobi???Bellman Equations, SIAM Journal on Control and Optimization, vol.25, issue.5, pp.1244-1252, 1987.
DOI : 10.1137/0325068

P. Loreti and E. Tessitore, Approximation and regularity results on constrained viscosity solutions of Hamilton-Jacobi-Bellman equations, J. Math. Systems, Estimation Control, vol.4, pp.467-483, 1994.

M. Motta, On Nonlinear Optimal Control Problems with State Constraints, SIAM Journal on Control and Optimization, vol.33, issue.5, pp.1411-1424, 1995.
DOI : 10.1137/S0363012993247445

M. Motta and F. Rampazzo, Multivalued dynamics on a closed domain with absorbing boundary. Applications to optimal control problems with integral constraints, Nonlinear Analysis: Theory, Methods & Applications, vol.41, issue.5-6, pp.631-647, 2000.
DOI : 10.1016/S0362-546X(98)00301-0

C. Nour and R. Stern, The state constrained bilateral minimal time function. Nonlinear Analysis: Theory, Methods &amp, pp.693549-3558, 2008.

B. Piccoli, Optimal syntheses for state constrained problems with application to optimization of cancer therapies, Mathematical Control and Related Fields, vol.2, issue.4, pp.383-398, 2012.
DOI : 10.3934/mcrf.2012.2.383

Z. Rao and H. Zidani, Hamilton-Jacobi-Bellman Equations on Multi-Domains, In Control and Optimization with PDE Constraints, International Series of Numerical Mathematics, vol.164, pp.93-116, 2013.

R. T. Rockafellar, Proximal Subgradients, Marginal Values, and Augmented Lagrangians in Nonconvex Optimization, Mathematics of Operations Research, vol.6, issue.3, pp.424-436, 1981.
DOI : 10.1287/moor.6.3.424

H. Soner, Optimal Control with State-Space Constraint I, SIAM Journal on Control and Optimization, vol.24, issue.3, pp.552-561, 1986.
DOI : 10.1137/0324032

H. Soner, Optimal Control with State-Space Constraint. II, SIAM Journal on Control and Optimization, vol.24, issue.6, pp.1110-1122, 1986.
DOI : 10.1137/0324067

R. Stern, Characterization of the State Constrained Minimal Time Function, SIAM Journal on Control and Optimization, vol.43, issue.2, pp.697-707, 2004.
DOI : 10.1137/S0363012903426033

L. Van-den-dries and C. Miller, Geometric categories and o-minimal structures. Duke Math, J, vol.84, issue.2, pp.497-540, 1996.

P. Wolenski and Y. Zhuang, Proximal Analysis and the Minimal Time Function, SIAM Journal on Control and Optimization, vol.36, issue.3, pp.1048-1072, 1998.
DOI : 10.1137/S0363012996299338