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DEVELOPMENT OF HOMOGENEITY CONCEPT FOR
TIME-DELAY SYSTEMS

EFIMOV D., PERRUQUETTI W., RICHARD J.-P.

ABSTRACT. The notion of homogeneity is extended to the time-delay nonlin-
ear systems. Applications of Lyapunov-Krasovskii functionals and Lyapunov-
Razumikhin functions for stability investigation are analyzed. The notion of
local homogeneity is introduced, relations between stability/instability of the
locally approximating dynamics and the original time-delay system are estab-
lished. A link between homogeneity and input-to-state stability is investigated.

Examples of application of the proposed theory are given.

1. INTRODUCTION

For nonlinear dynamical systems, behavior of trajectories of a homogeneous sys-
tem can be extended to the whole state space based on their behavior on a suitably
defined sphere around the origin [1]. Thus the state vector rescaling does not change
the system behavior. As it has been shown during the last two decades this prop-
erty can be used for stability analysis [2, 3, 4, 5, 6], systems approximation [7, 8],
stabilization [9, 10, 11, 12, 13] and observation [2, 8]. Analysis and synthesis of ho-
mogeneous systems is a little bit simpler, for example, the Lyapunov function has
to be constructed on the unit sphere only (on the whole state space it can extended
using rescaling). Moreover, it has been shown that for stability /instability analysis,
Lyapunov function of a homogeneous system can be chosen homogeneous [6, 14].

In the work [2] the homogeneity in the bi-limit has been introduced, that is
homogeneity with different weights and approximating functions at a vicinity of
the origin and at infinity. Recently the bi-limit homogeneity has been extended
to the local homogeneity [14], when the system is similar to a homogeneous one
on a sphere only. In this case the homogeneous systems theory allows the original
nonlinear system behavior to be analyzed locally.

This theory has been developed for continuous time-invariant nonlinear ordinary
differential equations (ODEs). Another important class of systems includes those
described by the differential equations with time-delayed states. The presence of
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delays is usual in many applications [15, 16]. Analysis of a delay influence on the sys-
tem stability is critical for many natural and human-developed systems [17, 18, 19].
For instance, a large literature was recently devoted to networked systems (see
[20, 21] and their references) which suffer from various sources of delays (such as
access time, communication or packet dropouts), as well as to embedded /real-time
systems, the asynchronous sampling effect of which can be modeled by delays (see
[22] and the references herein). However, most of the examples in this literature are
modeled by linear time-delay systems (i.e., with constant coefficients and possibly
variable delays). This is due to the fact that, for such models, the stability analy-
sis is already well developed with even converse Lyapunov-Krasovskii theorems in
the case of constant delays [17]. However, for nonlinear applications, design of a
Lyapunov-Krasovskii functional or a Lyapunov-Razumikhin function is still a dif-
ficult problem. A motivation for this study is that stability analysis could be (at
least partially) facilitated by using homogeneity arguments, as it has been done for
ODEs, where the class of homogeneous systems includes linear ones while extend-
ing some advantages of linear system theory to nonlinear domain. In this way, for
instance, analysis of networking /sampling systems can be eased if the homogeneity
concept can be properly extended to time-delay systems.

The goal of this work is to develop the homogeneity approach to the nonlinear
time-delay systems. The problem is that delay systems operate in the infinite
dimensional state space. Extension of the standard results [6] to this class of systems
needs a complete revision of the homogeneous system apparatus. There exist a few
works dealt with time-delay systems using the homogeneity theory [23, 24, 25, 26].
In [24, 26] a homogeneous (linear) delay differential equation has been studied, in
[25] the cooperative and homogeneous systems have been analyzed. In all these
works, the homogeneity theory has not been extended to the functional spaces
and the papers are based on homogeneity of non-delayed parts of the differential
equations.

The outline of this work is as follows. The preliminary definitions and the system
equations are given in Section 2. The homogeneous norm, an extended definition of
homogeneity for time-delay systems, as well as sufficient stability /instability condi-
tions are presented in Section 3. The local homogeneity theory is studied in Section
4. In [27, 28, 29, 30] it has been shown that for ordinary differential equations, the
homogeneity implies some kind of robustness with respect to external disturbances:
a corresponding link between input-to-state stability (ISS) and homogeneity for a
nonlinear time-delay system is established in Section 5. Examples are presented in

Section 6.
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2. PRELIMINARIES
Consider an autonomous functional differential equation of retarded type [19]:
(1) dz(t)/dt = f(z), t >0,

where z € R™ and x; € C|_ ¢ is the state function, z4(s) = z(t +s), -7 < s <0
(we denote by Ci, 4, 0 < a < b < 400 the Banach space of continuous functions ¢ :
[a,b] — R™ with the uniform norm |[|@|| = sup,<.<;, [¢(<)|, where || is the standard
Euclidean norm); f : Cj_,q — R™ is a locally Lipschitz continuous function,
f(0) = 0. The representation (1) includes pointwise or distributed retarded systems
with either constant or variable time delay 7(t) € [0, 7]. We assume that solutions of
the system (1) satisfy the initial functional condition zg € C|_; o). It is known from
the theory of functional differential equations [19] that under the above assumptions
the system (1) has a unique solution x(t,x() satisfying the initial condition o,
which is defined on some finite time interval [—7,T) (we will use the notation z(t)
to reference x(t, zo) if the origin of xg is clear from the context).

The upper right-hand Dini derivative of a locally Lipschitz continuous functional
V : Cl—r0 — R, along solutions of the system (1) is defined as follows for any
¢ € Cl_ro:

1

D™V(¢) =lim sup —[V(én) = V(9)],
h—0t

where ¢p, € C|_; g for 0 < h < 7 is given by

o0+ h), 0 €l—1,—h)
¢(0) + f((b)(e + h)7 RS [—h,O}.

For a locally Lipschitz continuous function V : R" — Ry the lower or upper

on(0) =

directional Dini derivatives are defined as follows:

. o VIw(0) + hf(@)] — VE(0)]

D™ V[z(0)] f(z¢) = hlg(l]l+ inf A )

Vizi(0) + hf(ze)] = VIz:(0)]
Y .

A continuous function o : R. — R, belongs to class K if it is strictly increasing

DY V[24(0)]f (1) = m_sup

and o (0) = 0; it belongs to class K if it is also radially unbounded. A continuous
function 8 : Ry x Ry — R4 belongs to class KL if 5(-,r) € K and B(r,-) is a
strictly decreasing to zero for any fixed r € R;. The symbol 1,m is used to denote

a sequence of integers 1, ..., m.

3. HOMOGENEITY

For any r; > 0, i = 1,n and A > 0, define the dilation matrix A,.(\) =
diag{\"}™_, and the vector of weights 7 = [r1,...,r,]%.
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For any 7; > 0,4 = 1,n and x € R™ the homogeneous norm can be defined as
follows

n 1/p
|zl = (2 Iwilp/”) L Pz max T
=

For all z € R”, its Euclidean norm || is related with the homogeneous one:
a.(|zfr) <] <o.(|zl),

0r(s) = max |al, o l(s) = max [z,

where ¢,.,0, € K define the Euclidean norm deviations with respect to the
homogeneous norm. The homogeneous norm has an important property that
|A;(N)z|, = Mz|, for all € R™. Define S, = {z € R" : |z|, = 1}.

Since the transformation by dilation matrix A,.(\) is linear, it can be applied to
functional arguments. Indeed, for any r; > 0,4 = 1,n and ¢ € Clap; 0<a<b<
400 the homogeneous norm can be defined as follows

n 1/p n
|l = (ZH@HP/”) co=]]r:
=1 i=1

Lemma 1. There exist two functions p,»Pr € Koo such that for all ¢ € Cqy)

e, (1oll:) < llll < pr(lI¢l])-

Proof. Let ||¢||, < s for some s € Ry, then by the norm definition ||¢;|[?/" <
S leillP/m < 5P and (||| = supgc.<p |di(s)| < 8" for each i € T,n. There-
fore, [|¢]| = SUPq<c<b [9()] = SUPg<c<p V E?:1¢12(§) < \/Z?:l[supagggb lpi(s)]]? <
VX 8%, Take pp(s) = /XI5, obviously p, € K. Inversely, let ||¢]| < s

for some s € Ry, then sup,< <, ¢7(s) < sup,<.<p 27107 (s) < s* and ||¢i]| =

o o N
supagggb\¢i(§)| < s for each ¢ € 1,n. Finally, ||¢], = (2?21”@”%’/“) /e <
(>, s”/“)l/p and p 1 (s) = (X1, s")/”)l/p as wanted from class Koo. O

Therefore, the proposed homogeneous norm is equivalent to the uniform norm
in Cp, . The homogeneous norm in the Banach space has the same important
property that [|A,.(A)@||. = Al[¢]|, for all ¢ € Cy, ). Define the corresponding unit
sphere S, = {¢ € C|_ g : [|9]] = 1}.

Definition 1. The function g : Ci_. o — R is called r-homogeneous (r; > 0,
i =1,n), if for any ¢ € C|_ ) the relation

holds for some d € R and all A > 0.
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The function f : Ci_; o — R" is called r-homogeneous (r; > 0, i = 1,n), if for
any ¢ € C|_; ) the relation

holds for some d > —minj<ij<, 7; and all A > 0.

In both cases, the constant d is called the degree of homogeneity.

The introduced notion of homogeneity in C|_ g is reduced to the standard one
in R™ [6] under a vector argument substitution. An advantage of homogeneous
systems described by nonlinear ordinary differential equations is that analysis of
their stability can be performed on the unit sphere S, only [6] (the homogeneous
system trajectories have a similar behavior on any other sphere defined by the norm
|-]-). This conclusion is based on the property that any solution of a homogeneous
system can be obtained from another solution under the dilation rescaling and
a suitable time re-parametrization. A similar property holds for some functional
homogeneous systems.

Proposition 1. Let z : Ry — R™ be a solution of the r-homogeneous system (1)
with the degree d = 0 for an initial condition xo € C|_; . For any A > 0 define
y(t) = A, (N)z(X\t) for all t > 0, then y(t) is also a solution of (1) with the initial
condition yo = Ar-(N)xp.

Proof. By definition xy4,(s) = z(At+\%s) = z(t+s) € R™ and y:(s) = A, (N)zra(5)
for any —7 < s <0, then

(0 = 5 (A N2('9) = MA ) (a0
= f(Ar(N)zrae) = f(yt)
and y(t) is a solution of (1). O

Corollary 1. Let the origin be locally asymptotically stable for a r-homogeneous

system (1) with the degree d = 0, then it is globally asymptotically stable.

Proof. Assume that the origin is locally attractive for (1) with an open domain of
attraction A C C|_, ), i.e. for any € > 0 and zg € A there is T ;, > 0 such that
l|z(t, z0)||r < € for all t > T, ,, (by Lemma 1 the norms || - || and || - ||, can be
replaced). Take a p > 0 such that S} C A where S} = uS,., then for any £ € Cj_; g
there is 1o € S¥ such that & = A,.(N)zg for A = p~!|¢]|, and the corresponding
unique solution z(t, &) = A,.(\)2(\%, x0) by Proposition 1. Obviously, if (¢, z¢) —
0 for all zg € S# with ¢t — +oo0, then so is z(t,£) = A, (\)x(\%, x0), and the claims
about global attractiveness and forward completeness follow.

To prove that local stability of the origin implies global in this case, assume

that sup,>q [|z(t, 70)||» < o(|[xoll-) for all 7y € A and some o € K. Now take any
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¢ € Ci_r,0, then there is g € S# C A such that & = A, (A)zg for X = p~ |||,
with the corresponding unique solution (¢, &) = A,.(\)z(A\%, zo) by Proposition 1.

Therefore
sup [|z(t, &)||» = sup [| A, (N)z(A%, 20) ||, = Asup [|z(A%t, z0)]|,
t>0 t>0 >0

< lgllro(lzollr) /1 = o (w)/pllEllr,

and the system is Lyapunov stable [17, 18, 19]. O

Thus we have proven that for homogeneous time-delay systems with d = 0 any
local stability /attractivity properties at the origin hold globally. The case of ho-
mogeneous systems with d = 0 becomes important for stability analysis using local
homogeneous approximating dynamics, which are considered in Section 4 below
(the approximating dynamics degree can be assigned to be zero).

For ordinary differential equations it has been also shown that asymptotically
stable/unstable homogeneous systems always have homogeneous Lyapunov func-
tions [2, 14, 6]. In this work we would like to prove a similar (sufficient only) result
for time-delay homogeneous systems. For time-delay systems there exist two main
techniques for stability analysis based on the Lyapunov approach. The first one is
based on Lyapunov-Krasovskii functionals, another one on Lyapunov-Razumikhin

functions [17, 18, 19]. Counsider consequently both of them.

3.1. Lyapunov-Krasovskii approach. Unfortunately, due to peculiarities of the
directional derivatives for functionals (see the definition in Section 2) the Lyapunov-
Krasovskii approach is hard to develop using homogeneity for a general case. To
explain the issue, consider the following example. Let the functions fy : R” — R™,
fi:R* > R" go:R* = Ry, g1 : R® —» Ry be r-homogeneous with the same r; >
0, i = 1,n and similar degrees d > — miny<;<,, r; for fo, f1 and v > max{0, —d} for
9o, g1- For f(x) = fo[z:(0)] + fi[z:(—7)] in (1) consider the Lyapunov-Krasovskii

functional
0

(@) V(6) = gol(0)] + / g1l8(s)]ds, & € Crra,

-7

which satisfies the required homogeneity conditions, then

DV(¢) = 0go(x)/0],_4) {fol@(0)] + frld(=7)]} + 91[6(0)] — ga[d(—7)].

Let for some ¢ € S, the above expression verify V < 0. Consider the dilation
transformation ¢ = A,.(\)g influence on V:

D*V(€) = DFV(A(Nw) = A dgo(a)/ 0] ,_ o) {Fole(0)] +
Silp(=7)I} + X {g1[e(0)] — gale(—=7)]}.
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Thus this basic transformation for homogeneous systems scales differently the parts
proportional to fy, f1 and gg, g1, therefore in general case for some A > 0 it could
be V > 0. In other words, the derivative of a homogeneous functional may be
non-homogeneous. As we have shown, the only exclusion is the case with d = 0

(that is the case of linear time-delay systems, for example, but not only).

Proposition 2. Let in (1) the function f(z;) = folz:(0)] + fi]x:(—7)] have r-
homogeneous fy : R™ — R™ and f; : R" — R" with degree d = 0, and there exist
r-homogeneous continuous functions go : R® — R4, g1 : R® — R, with degree
v > 0 such that DTV(¢) < 0 for all ¢ € S, where V is given in (2). Then
D*TV(¢) <0 for all ¢ € Ci_ o) with |[¢]| # 0.

A similar result can be proven for a non-homogeneous functional V with a ho-
mogeneous derivative DTV(yp), i.e. if the function gg is r-homogeneous with degree
1, the function g; is r-homogeneous with degree v and the functions fy, f; are

r-homogeneous with degree d, provided that p + d = v.

3.2. Lyapunov-Razumikhin approach. The Razumikhin approach is based on
Lyapunov-Razumikhin functions [17, 18, 19] defined on R™, which give a pointwise
sufficient criteria for stability (not a functional one). It allows us to develop this
approach using homogeneous arguments.

Note, that if a function V' : R® — R is positive definite and radially unbounded,
then there are functions aj,as € Ko such that ai(|z]) < V(z) < aq(|z|) for
all x € R*. If V is r-homogeneous with a degree v, then for any z € R" we
have V(z) = V(Ar(Jz|-)y) = |z|¥V(y) for some y € S,, therefore, in this case
ai(s) = [0,

be strictly positive for radial unboundedness of V. In addition, if V' is continuously

(s)]Y minges, V(y) and as(s) = [o, ' (s)]” maxyes, V(y), and v should

differentiable at the origin, then v should be bigger than 1.

Theorem 1. Let the function f in (1) be r-homogeneous with degree d > —miny<;<, r;
and there ezist a locally Lipschitz continuous r-homogeneous Lyapunov-Razumikhin
function V : R™ — Ry with degree v > max{0, —d} such that

(i) there ewxist functions o,y € K such that for all ¢ € S,

plpax VIpO)] < H{VieO)} = DTV]p(0)lf () < —al|e(0));

(ii) there exists a function v € K such that As < 7' (As) < Ay(s) for all s, €

R\ {0}

Then the origin is globally asymptotically stable for the system (1).

Proof. The dilation transformation ¢ = A,(\)¢ connects any ¢ € Cj_, o \ {0} with
some ¢ € S, for properly chosen A > 0. Let us multiply the left-hand part of the
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implication (i) by A¥ and the right-hand part by \¥*:

yax, XV[p(0)] < M{VIp(O)]} = X TEDTVIp(0)lf () < —A"a(|e(0)),
the inequalities and relations should not be changed for A > 0. Owing the functions
v and ' properties, the inequality v {\*V[p(0)]} < A*v{V[(0)]} holds. Formally
infoes, {a(J¢(0)])} = 0, however having in mind that ¢ is a continuous function

and a solution of (1), there exists

a =

inf allo(o
YES, maxge[—r.0 V()] <y {V[p(0)]} (|<)0( )|)

and a > 0. Indeed, for the case maxye[_- 0] V[p(0)] < v{V[p(0)]} we have

ai(p, (1)) < al(l\soll):al(een[lfgfo]lw((?)l)
= phax ar(le(@)]) < pnax, V(#(0))
< [V(e(0))],

thus ay 'oy~toay(p (1)) < |(0)| for all such ¢ € S, and a > a;lov_loozl(gr(l)) >

Zr

0. Therefore, due to homogeneity of the functions f and V' we have:
max VA (Ng(0)] </ {VIA (e O)]} =
D*VIA(N)pO0)]f(Ar (V) < —X"Fa,

or equivalently (A = |||, > |#(0)| > .71 (|$(0)])),

max_V[p(0)] < /{V[6(0)]} = DTV[6(0)]f(¢) < —a/(|6(0)]),

oe[—,0]

where the function o/(s) = (,71(s))**4a is from class K since v+d > 0. Therefore,
if Razumikhin arguments are true for ¢ € S;, then they are valid for any ¢ € C|_; q,
that implies the global asymptotic stability of the origin for (1) [17, 18, 19]. O

The condition (i) imposed in Theorem 1 on the system (1) behavior is the con-
ventional Razumikhin condition (except that in the homogeneous case it can be
verified on the sphere S, only). The constraint (ii) on existence of the function ~/
is new. Roughly speaking this requirement says that the function v has to be “ho-
mogeneous” with degree 1. Another explanation is that the function v is globally
Lipschitz. For instance, this is the case if there exists 1 < k; < ko < +00 such that
k1s < 7(s) < kas.

Remark 1. Note that the full derivative D™V [p(0)]f(¢) is a function of ¢ € S,,
however under the condition maxge[—r o) VA, (A)@(0)] < ¥ {V[A-(A)@(0)]} the in-
equality DTV [p(0)]f(¢) < m(¢(0)) holds for some m : R™ — R. If the function m
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is r-homogeneous (the functions V' and f possess this property), then the property
m(e(0)) < —a(|e(0)]) in (ii) has to be verified for ¢(0) € S, only.

Instability conditions in the Lyapunov-Razumikhin framework have been formu-
lated in [31, 32]. We will say that the system (1) is unstable at the origin if for
any 0 > 0 there exist ¢ > 0, [|zo]| < ¢ and ¢, . > 0 such that thgm
function V' : R™ — R, define two sets:

| >e. Fora

A |
T e

Pl ={p €51 VIp(0)] = max VIp(®)]).

P ={p €8 : Vip(0) = min V[p(6)]}.

Theorem 2. Let the function f in (1) be r-homogeneous with degree d > —minq<;<, r;
and there exist a locally Lipschitz continuous r-homogeneous Lyapunov-Razumikhin
function V : R™ — R, with degree v > max{0, —d} such that one of the following
properties is satisfied:

(i) D VIp(O)Lf(¢) > 0 for all ¢ € PYj;

(i5) D=V [p(0)]f(¢) > 0 for all p € PY.
Then the system (1) is unstable at the origin.

Proof. Select a A > 0 such that the dilation transformation ¢ = A,.(\)p connects
a ¢ € Clrg \ {0} with some ¢ € S,. The sets II}; = {¢ € Cl_, ) : V[p(0)] =
maxpe[—r.0 V[o(0)]}, Ty, = {¢ € C_r0) : V[$(0)] = minge[_r 0 V[¢(0)]} are well
defined by the dilation transformation of P);, PV
Unsor VP = (6= (Mg A > 0, € 5, : VIp(0)] = max, VIe(O))
={d =AMV, A>0,0 €S, : XV[p(0)] = A max V[p(0)]}

0e[—7,0]
=10y,
Urs0dr (N Py = {6 = A (N, A > 0,0 € S, V[p(0)] = een[njgo] Vie0)]}
={o=AMNp,A> 0,0 €S : NV[p(0)] = " 661}1}30] Vie(®)]}
=1V,

Take ¢ € II}; or ¢ € IV, then

D=V[$(0)]f(¢) = XD~ VI]p(0)]f(¢) > 0.

Therefore, D~V [¢(0)]f(¢) > 0 for all ¢ € I}, or ¢ € 11V, which are the conditions
of instability of (1) into the sets IT}, or IT from [31, 32]. O

In the case (i) of Theorem 2, the set T}, is forward invariant for the system (1)
(once the relation V[¢(0)] = maxge[—r0) V[$(0)] is valid, next it will be satisfied for

all forward times since V' (¢) > 0 on IT},), thus all trajectories initiated or entered
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1Y, go to infinity staying into IT},. The case (ii) is more tricky, then we have
Cl_r = II},UBY,, where ©), = {¢ € C_, 0] : V[¢(0)] > minge|_- o V[¢(0)]}. The
function V() = V (z(t)) is strictly increasing in 1Y, (since V(¢) > 0 on I1Y,) and
a trajectory of (1) cannot stay continuously in IIY, on a time interval of the length
more than 7 (by the same reason: V/(¢) is strictly increasing while z(¢) is in I17).
In ©Y,, by the definition of this set, the function Vy,(t) = minge[_- o V[z(t + 0)],
which is defined on trajectories of (1), is non-decreasing while a trajectory stays
in ©), (since V[$(0)] > minge(_,0) V[p(0)] if ¢ € O),), and if a trajectory belongs
to O a time bigger than 7 we have that V,,(t) > V,,(t — 7). Since a trajectory
by leaving ©Y enters the set IV,
and V,,(t) = V(t), it implies that the property V;,(t) > V,,(t — 7) is satisfied for
all ¢ > 0. Therefore, all trajectories in the case (i) go to infinity. The case (i)

where the function V(¢) is strictly increasing

may include the case of a saddle equilibrium existence for (1), while the case (ii)
corresponds to anti-stable or strongly unstable equilibrium of (1) at the origin.
The results of theorems 1 and 2 mean that by using homogeneous Lyapunov-
Razumikhin functions the global stability /instability of a homogeneous system at
the origin can be checked on the sphere S, only. These facts may simplify the
function V search and the system analysis with application of a numerical routine.

The drawback is that in the space C|_; o], the sphere S, is a rather complex object.

4. LOCAL HOMOGENEITY

A disadvantage of the global homogeneity introduced so far is that such systems
possess the same behavior “globally”. Thus the homogeneous systems are not re-
ally “nonlinear”; they have similar diversity of operating modes as linear systems.
In fact, from analysis and design points of view the homogeneous systems are a
generalization of linear ones. Comparing with other nonlinear systems, it may be
easier to find a (homogeneous) Lyapunov function for homogeneous systems. That
is why finding a possibility to apply this approach for a broader class of nonlinear
systems is very important.

An approach to resolve this issue consists in introducing a local version of ho-

mogeneity as in [14].

Definition 2. The function g : Cj_. g — R is called (r,\o,90)-homogeneous (r; >
0,i=1,n; go : Ci_r 0] = R) if for any ¢ € S, the relation

Jim A= g(A,(M)6) — go(@) =0

is satisfied (uniformly on S, for Ao € {0,+00}) for some dy € R.
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The system (1) is called (r,Xo,fo)-homogeneous (r; > 0,4 =1,n; fo: Cl_rq —
R™) if for any ¢ € S, the relation

lim A" A ) F(A(N)g) — fo(¢) =0

A— Ao
is satisfied (uniformly on S, for Ao € {0,+00}) for some dy > —miny<;<y, 7;.

For a given Ao, go and fo are called approzimating functions.

For any 0 < A\g < +oo the following formulas give a variant of homogeneous
approximating functions go and fy:

90(0) = |[]12X5 “ g(Ar (o)A ([[6]]5)6), d >0,
fo(8) = 181192 A (||]1-) A7 (No) f (Ar (A0) A (1|1 @), d > — min 7y

1<i<n
This property is called local homogeneity [14], it allows us to analyze local sta-
bility /instability of the system (1) on the basis of a simplified system

3) dy(t)/dt = foly-(t)],t > 0,

called the local approzimating dynamics for (1).

Theorem 3. Let the system (1) be (r,)\q, fo)-homogeneous for somer; > 0,i=1,n,
the function fy be continuous and r-homogeneous with the degree dy. Suppose there
exists a locally Lipschitz continuous r-homogeneous Lyapunov-Razumikhin function
Vo : R" = R with the degree vy > max{0, —dp}, a1(|z]) < Vo(x) < aa(|z]) for all
x € R™ and some a1, as € Ko such that:

(i) there exist functions o,y € K such that for all ¢ € S,

popax Volp(0)] < 1{Vole(0)]} = D*Volp(0)]foly) < —alle(0)]);

(ii) there exists a function v € K such that As < 7' (As) < Ay(s) for all s, €
R, \ {0},
Then

1) if Ao = 0, then there ewists 0 < \. such that the system (1) is locally asymp-

totically stable at the origin with the domain of attraction containing the set

Xo={¢ € Crrp : |10l <ar'oazopr(A)};

2) if Ao = +o0, then there exists 0 < A < +00 such that the system (1) is globally

asymptotically stable with respect to forward invariant set

Xeo ={0 € Crrgy: ll¢ll <arytoazop (A)};

3) if 0 < Ao < 400, then there exist 0 < A\, < Ao < e < +00 such that the system

(1) is asymptotically stable with respect to the forward invariant set X, with region



DEVELOPMENT OF HOMOGENEITY CONCEPT FOR TIME-DELAY SYSTEMS 12

of attraction
X = {¢peCrg:a;'oazop (A) <|l¢ll
<ay'oazop,(A)}

provided that the set X is connected and nonempty.

Proof. For the system (1) the transformation of coordinates ¢ = A,.(A)y connects
any ¢ € Ci_, g \ {0} with some ¢ € S, for A = [|#||,. According to definition of
the function Vy we have:
D™ Volp(0)]f(¢) = D Vo[Ar(N)p(0)]f(Ar(N)p)

= D'Vo[Ar(N)e(0){fo(Ar(N)) + [f(A+(N)p) = fo(Ar(N)@)]}

= AT DTV p(0)] fole)

XD Vop(O)JAT N{F (Ar) = XA (M) fo()}
= XDV [(0){ fole) + AT PATT ) F (A (V) = fol(@)]}-

Due to continuity of the functions f, fo and the local homogeneity property defi-
nition for any ¢ > 0 there exist A\. < Ao < . such that

sup D Volp(OHA™® A ) F(A-(N)g) — fole)} < e

PES,
for all A € (A.,\.). From (i) we know that the inequality DT Vy[p(0)]fo(¢) <
—a(|p(0)]) is satisfied under the condition maxge|—rg Vol(6)] < 7{Vo[(0)]}. By
the same arguments, since the property maxge(—-0] Vol (0)] < v{Vo[p(0)]} excludes

(0)
(0)

from consideration some functions ¢ € S,., we can prove that a > 0, where

a= inf «a 0.
PESr maxge(—r 0] Volp(0)]<v{Vo[v(0)]} (e (0D

Let the constants )., A. be chosen to ensure that a > . Multiplying (i) on A0 we
get that if a property is satisfied for ¢ € S, with maxge[—- 0] Vo[ (0)] < v{Vo[¢(0)]},
then it also holds for ¢ € Cj_, under the restriction maxge[—, o Vo[o(6)] <
Y {Vo[#(0)]} (due to condition (ii)). Then the following property holds for o/(s) =
(51 (5))" 0 (0 — )

max Vo[¢(0)] <+ {Vo[#(0)]} = DT Vo[6(0)]fo(¢) < —a’(I¢(0)]),

0e[—7,0]
where ¢ = A,.(N)p, ¢ € S, and A € (A, \.), i.e. forall ¢ € X, = {¢ € Cler) :
A < [[@llr < A}
If Ao = 0, then clearly A\, = 0 and the origin is locally asymptotically stable with
the domain of asymptotic stability containing the set X, [17, 19]. Indeed, take any
initial conditions ||¢[[, < A, then maxge(_r Vo[p(0)] < a2(pr(Ae)) and Vo(t) is



DEVELOPMENT OF HOMOGENEITY CONCEPT FOR TIME-DELAY SYSTEMS 13

not increasing for all ¢ > 0, therefore |z(t)| < a;* o ag o pr(A:) in (1) for all t > 0,
which gives the required conclusion.

If \g = +00, then A. = +00 and the function V; for the system (1) is decreasing
into the set R™\ X, for some A_.. Thus the set X, is forward invariant for (1)
and attracting. Borrowing arguments from [17, 18] these facts imply the global
asymptotic stability of the system (1) with respect to the set X.

Finally, let 0 < Ay < +o0 and the set X be nonempty and connected, since
0 < [p(0)] < 0.5a; 0z 07,(\) for all ¢ € X, then the set X contains a level of
the function Vg and the function Vj is decreasing into the set X and all trajectories
x(t, o) with initial conditions zg € X reach for the set X . O

Theorem 4. Let the system (1) be (r,)\g, fo)-homogeneous for somer; > 0,i=1,n,
the function fy be continuous and r-homogeneous with the degree dy. Suppose there
exists a locally Lipschitz continuous r-homogeneous Lyapunov-Razumikhin function
Vo : R" = R with the degree vy > max{0, —dp}, a1(|z]) < Vo(x) < aa(|z]) for all
x € R™ and some a1, s € Koo, such that D~ Vo[p(0)]fo() > a > 0 for all p € PYo
or ¢ € PX[‘). Then

1) if Ao = 0, then there exists 0 < \. such that for the system (1) the set

Xo={p€Cr o]l <ai'oazopr(A)}

is unstable;

2) if Ao = +0o0, then there exists 0 < . < +00 such that for the system (1) the
set

Xeo ={0€Clrg:|lgll <ait0asop (A)}

is unstable;

3) if 0 < Ag < 400, then there exist 0 < A, < Ag < Ae < 400 such that for
the system (1) the set X, is unstable provided that the set X = {¢ € C|_,q :
artoay op (A) <llol| < oyt oag o pr(A)} is connected and non empty.

Proof. For A = ||¢|| the coordinates transformation ¢ = A,.(\)p connects any
¢ € Ci—r0) \ {0} with some ¢ € S,. As in the proof of Theorem 3 we have:
D Vo[p(0)]f(¢) = AP D™ Volp(0)[{folp) + A~ P AT N F(Ar(N)) = fol)]}-

Due to continuity of the functions f, fo and the local homogeneity property defi-
nition for any ¢ > 0 there exist A\. < Ao < . such that

:’gg D™ Vol (0){A™® A (N F(A- (V) — fo()} < &

for all A € (A.,\.). Let the constants A_, A\. be chosen to ensure that a > &.
As it was shown in the proof of Theorem 2, TI}°> = UysoA,(A\)PY and IT}? =
UasoAr(A\)PY?. Define Q. = {¢ € Clor0) : Ac < |¢][» < Ac}, then the set e NQ.
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contains repelling trajectories of the system (1) (D~ Vy[¢(0)]f(¢) > ||#||20F9 (a —
e) > 0 for all trajectories in IT;?NQ.). Recall that C|_, o) = II}0UOY, where ©Y0 =
{6 € Cl_r0) : Vol¢(0)] > minge(_r 0] Vol¢(0)]}, then Q. = [I[}0 N QU [O0 N Q.
According to performed computations, D~Vy[¢(0)]f(¢) > ||¢||x0F % (a — &) > 0 for
all ¢ € 110 N €)., therefore, the function V; is strictly increasing on trajectories of
(1) into the set IIY° N Q.. In addition, V() = Vy(t) for (1) for all trajectories in
I1}o N Q., where V) (¢) = minge(_r0 Volz(t + 0)], and V) (t + 7) > V5 (¢) for all
t > 0 while trajectories of (1) stay into the set ©Y° N Q.. Finally, for (1) there exist
two options, either a trajectory exits the set ). in a finite time or the set €. is
forward invariant for (1) and V.0 (t + 7) > V,2(t) for all t > 0. Therefore, the set
Q). contains a repelling trajectory of (1). Further the results of the theorem follow

regarding the value of Ag. O

These results establish the links between different variants of local homogene-
ity with stable/unstable approximating dynamics (3) and the stability/instability
properties of the original system (1), similarly to [14].

Corollary 2. Let the system (1) be (r,\o,fo)-homogeneous for some r; > 0,
i = 1,n, the function fo : R® — R™ be continuous and r-homogeneous with
the degree dy and there exist an r-homogeneous Lyapunov-Razumikhin function
Vo : R™ — Ry with the degree vy > max{0, —do} such that D™ Vy(z) fo(z) < —a(|z|)
(D~ Vo (x) fo(x) > a(|x])) for all x € S, with o € K. Then all conclusions of Theo-
rem 8 (Theorem 4) hold.

Proof. If fo : R® — R", then the conditions (i) and (ii) of Theorem 3 can be
reduced to DT V() fo(z) < —a(|z|) (D™ Vo(x)folx) > a(]z])) for all z € S, since
the functions fy and Vj are homogeneous. O

Similarly to [14], one can use these conditions to detect for (1) the presence of
Yakubovich’s oscillations [33].

5. ISS PROPERTY OF TIME-DELAY HOMOGENEOUS SYSTEMS
Consider the system (1) with inputs:
(1) di(t) fdt = flrp,u(t)), ¢ >0,

where © € R", 7, € C|_; ) is the state function as before, and v : Ry — R™
is an essentially bounded (Lebesgue) measurable input, ||ul|c = ess.sup,sq |u(t)]
(we will denote by Lo the set of inputs v : Ry — R™ with |Ju||ec < +00); f :
Cl—r,0) x R™ — R™ is a continuous function (locally Lipschitz with respect to x;),
£(0,0) = 0. Under these conditions the system (4) has a unique solution z(¢, zo, u)

for any u € L, and z¢ € C|_; ¢ defined on some interval [—7,T).
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The Lyapunov-Razumikhin theory has been extended to the ISS notion analysis

in [34] as follows.

Definition 3. The system (4) is called ISS, if for all zg € C[_, ) and u € Lo there
exist 8 € KL and v € K such that for all ¢ > 0:

|2(t, 2o, u)| < B([|zoll, ) +y([|ulloo)-

Theorem 5. Let for the system (4) there exist a locally Lipschitz continuous ISS
Lyapunov-Razumikhin function V : R™ — Ry, i.e. there are functions oy, as, a3 €
Koo and v,x € K (v(s) > s for all s € Ry) such that for all x € R", p € Cj_;
and v € R™

ay(|z]) < V(z) < as(lz]),

max (eé??fo} Vip(9)], x(|u|)> <AHVIpO)} = DFVIp(0)]f (¢, u) < —as(p(0)]).
Then the system (4) is ISS.

In [27, 28, 29] it has been shown that if a nonlinear dynamical system is homo-
geneous, then it is also ISS with respect to an input (e.g. additive disturbance or
measurement noise). A similar link for time-delay system (4) is established in the
theorem below. Define f(xy,u) = [f(zs,u)T 0,]7 € R*™ it is an extended auxil-

iary vector field for the system (4), where 0,, is the zero vector with m elements.

Theorem 6. Let the vector field f be homogeneous with the weights r = [F1,... 0] >

0, 7 = [F1,...,7m] > 0 with a degree d > —rmin, Tmin = MiN1<j<p 75, i.€.
AN, Ar(Nu) = AAp (V) f(ze,u) YA > 0.

Assume that for the system (4) for u = 0 there exists a continuously differentiable
r-homogeneous Lyapunov-Razumikhin function V : R™ — Ry, V(0) = 0 with degree
V> Tmax = MaXi<i<n T such that:

(i) there exist functions a,y € K such that for all ¢ € S,

p Vip(0)] < H{VIp(0)]} = D*V[p(0)]f(¢,0) < —a(|»(0)]);

(ii) there ezists function v € K such that As < v'(As) < Ay(s) for all s, €

R4\ {0}.
Then the system (4) is ISS.

Proof. Under the introduced conditions f(A,(\)z:,0) = AA,.(X)f(z¢,0) and the
system @ = f(z¢,0) is globally asymptotically stable by Theorem 1. Since the
function V is homogeneous there are functions a;(s) = [, !(s)]” minyes, V (y),
az(s) = [o,;1(s)]” maxyes, V(y) such that aq(|z|) < V(2) < az(|z|) for all z € R™.
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It has been shown in the proof of Theorem 1 that for all ¢ € S,
px VIe(®)] < {VIe(O)} = DTVIp(0)]f(#,0) < —a,
[DTVIp(0)]] < b

for some a > 0 and b > 0. Due to homogeneity of f and continuity of f with respect

to u we have

|f((p?u) - f((P,O)‘ < U(|u|) V‘p € Sra

§Pmin if s S 1
o(s)=c
somaxif g > 1

for some ¢ > 0 and 9max = Omin > 0.

Below we will use the coordinate transformation ¢ = A, (||¢||,)¢, which connects
any ¢ € C_,0\{0} with the corresponding point ¢ € S,. For the input u we will
use the transformation v = Az(||¢||,)@, where & € R™ and

s Tmaxif 5 <1
al < p(l[gll)]ul, p(s) = ;
§7Tminif g > 1
where Thmax = maxi<j<m, 7; and Tmin = Mmini<j<, 75. Now let us consider the
time derivative of the Lyapunov function V' computed for the system (4) for all
¢ € Cl_70 and u € R™:

DV (9u) = [6ll7 DT V[p(0)] (g, @)
= [el7D*VIp(0)]£ (¢, 0) + I8, DTV [p(0)[{f (¢, @) — (¢, 0)}.

Assume that maxgc[— -0 V[@(0)] < v{V[¢(0)]} or equivalently (due to homogeneity
of V, see the proof of Theorem 1) maxge(_r0) V[p(0)] < ' {V]p(0)]}, then

D*V[p(0)]f (¢, u)

IN

—allolly* + vl ol o (|al)
—alloll7* + vl el k(oo (|ul),

IN

where
g~ TmaxOmin  if g <1

K(s) =

g Tminlmax  if g > 1

Therefore if —7yin0max < 0, which is equivalent to 7, > 0, then 7(s) = k(s)™! €
Koo and for |u| < o [a/(2b)n([|¢]l-)] we have DTV [p(0)]f(h,u) < —0.5al|¢[ly 7.

Since

ar(l[¢l) = en( max |$(0)]) = max on(|p(0)]) < max V(e(0)) <y {V[(0)]},

oe[—T,0] oe[—T,0] ~ 0€[-7,0]
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for x(s) =aiop on~'[2b/ac(s)] and as(s) = 0.5as"*% we obtain the property
s (e VIO x(lu) ) <71V} = DI VIA0) () < a0l ),

which implies ISS. O

The result of Theorem 6 says that if the conditions of Theorem 1 are satisfied
for the case v = 0 for the system (4), then it is ISS. This conclusion highlights
an additional importance of the introduced homogeneity concept for time-delay
systems: under additional algebraic restrictions on the system equations and its

Lyapunov-Razumikhin function (homogeneity) we gain the system robustness.

Corollary 3. Let a locally Lipschitz continuous function fo : Ci_; o — R™ be -
homogeneous with a degree d and admit a continuously differentiable r-homogeneous
Lyapunov-Razumikhin function V : R™ — Ry, V(0) = 0 with degree v > rpax.

If f(xp,u) = fo(xe) +u, i.e. u is an additive disturbance, then the system (4) is
1SS for d > —rumin-

If f(xy,u) = folxy + u), i.e. u is a measurement noise, then the system (4) is

ISS.

Proof. Take ¥ = r + v and 7 = r for the additive disturbance and measurement

noise cases respectively. [

6. EXAMPLES

In this section we will consider a homogeneous system with zero degree, two
academic examples of locally homogeneous time-delay systems (to illustrate various

aspects of theorems 3 and 4) and one model from biology of blood cell production.

6.1. A homogeneous time-delay system with degree d = 0. Consider the

system
22(t) + 22(t — 1)
max{|z(t)], [x(t — 7)[}’
where z(t) € R, 7 > 0 is a fixed time delay. Applying the Lyapunov-Razumikhin

z(t) = —2z(t) +

approach with V(z) = 0.522 it is straightforward to show that the system is stable.
The system is homogeneous for r = 1 and d = 0. According to Proposition 1,
if x(t,x0) is a solution of this system with initial condition o € C|_; ¢, then
y(t,yo0) = Ax(t,x0) is the system solution with initial condition yo = Az for any
A > 0. For 7 = 2, the system trajectory z(t, o) with zo(s) = e®, s € [-7,0] and the
system trajectory y(t,yo) = 2x(t, zo) for yo(s) = 2e°, s € [—7,0] are shown in Fig.
1. The results of simulation confirm the scaling property established in Proposition
1.
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F1GURE 1. Trajectories of a homogeneous system with degree zero

6.2. A globally stable system. Consider the system:

i1 (t) = =1 (t) + 22(t) — 27 (8);
Zo(t) = —kao(t) — z1(t) + axa(t — 7) — xg’(t),

where k, a are some positive parameters, 7 > 0 is a fixed time delay. This system
is locally homogeneous in the bi-limit:

)\1 = 0, T = [05 0.5],

fulen) = [ —aa(t) +2a(t), —kaalt) —1(8) + azalt =) | -
di =0, Vi(z) = 23(t) + 23(t), v1 = 1;
Ao = +oo, ro = [11], folz,) = [ —z3(t), —ax3(t) ]T,
dy =2, Va(z) = 23(t) + 23(t), vy = 2.

Straightforward calculations show that

Vi o= 2[—22(t) — kad(t) 4+ axy(t)zo(t — 7))
< 2[-23(t) — (k — 0.5a)x3(t)] + ax3(t —7)
< —2min{l,k — 0.5a}Vi(t) + aVi(t — 7).

Then

, H[laxm Vi(z(t +0)) < a ' min{l,k — 0.5a}Vy(t) =
el—r,

Vi < —2min{1, k — 0.5a} Vi,

and if ¢~ min{1,k — 0.5a} > 1 the system (3) at A\; = 0 is asymptotically stable,

that according to Theorem 3 implies local asymptotic stability of the system around
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FIGURE 2. The results of simulation for a stable bi-limit homoge-
neous system

the origin. Obviously for As = +o0 the system (3) is also asymptotically stable that
ensures global convergence of the trajectories to a vicinity of the origin. Note that
approximate behavior of the system in this case is defined by the time-delay free
dynamics (Corollary 2). The results of simulation for ¥ = 1, a = 0.5, 7 = 0.1
presented in Fig. 2 illustrate that actually the system is globally asymptotically
stable.

6.3. An oscillating system. Consider another planar system:
&1(t) = az1 (t) — w2(t — 7) — 27(t) + 21 (2);
l’g(t) = kl’g(t) + l’l(t — ’7') — l’%(t)xg(t) + l'l(t — T)Ltg(t),

where k£ > 1.5, a > 1.5 are some positive parameters, 7 > 0 is a fixed time delay.

The system is locally homogeneous in the bi-limit:

)\1 :O, r = [1 1],

T
filer) = [ an(t) —as(t —7) kas(t) +aa(t—7) |
di =0, Vi(z) = 23(t) + 23(t), v1 = 2;
Yo = oo, 13 = 05 1), foler) = | —abe) —ad0matt) |
do =1, Va(z) = 23(t) + |22(t)], vo = 1.
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FiGURE 3. Trajectories of an oscillating bi-limit homogeneous system

For Ay = 0 we have:

Vi(t) = 2z (t)[axi(t) — zo(t — 7)) + 2xo(t) [kxa(t) + 21 (t — 7)]
= 2az?(t) — 2x1(H)ao(t — 7) + 2ka3(t) + 220 ()21 (t — 7)
> [2a — 1)z3(t) — 23(t — 7) + [2k — 1]23(t) — 23(t — )
> pWi(t) —Vi(t —7), p=2min{a, k} — 1.

Then Vi (t) > Vi (t—7) into the set Py} and Vi (t) > (u—1)Vi(t—7) > 0 since p > 1.
Therefore, the conditions of Theorem 4 are satisfied and the system is unstable at
the origin. At Ay = +o00 the system has the same approximation dynamics as in the
previous example, therefore it has globally bounded trajectories. Since the system
has the single equilibrium at the origin, then under this conditions it is oscillating
in the sense of Yakubovich [33]. This conclusion is confirmed by the results of

numerical simulation presented in Fig. 3 for different values of .

6.4. Blood cell production model. The process of blood cell production is based
on differentiation of hematopoietic stem cells located in the bone marrow. Math-
ematical modeling of this process has a long research history (see [35, 36, 37| and
references therein). A model of the blood cell production can be applied for instance
to study of chronic myelogenous leukemia [35].

In [35, 36] the following model has been analyzed:

P(t) = —yP(t)+BIN@IN(t) — e BN (t - 7)N(t —7),
N(t) = —ON(t) = BIN@)IN(t) +2e " TBIN(t — T)N(t —7),
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FIGURE 4. Trajectories of the model from [35, 36]

where P € Ry and N € R, are concentrations of proliferating and nonprolifirating
cells, 7 > 0 defines an average duration of the cell cycle, v, > 0 define the apoptosis
and differentiation rates for populations P and N respectively, and 5 : Ry — R,
is a nonlinear function characterizing proliferation rate and interrelations between
these populations such that
NEIEOO pN) =0, NEIEOO NB(N) = 0.

An example is the Hill function S(N) = prnn with a > 0,6 > 0 and h > 1.
The conditions of existence of equilibriums (a positive one and at the origin) and
their local stability have been investigated in the papers [35, 36] (see also references
therein).

In this work we would like to establish global stability of this model using the
homogeneity theory developed here. For r = [1 1] the system has the following
approximating dynamics at infinity (due to properties of the Hill function)

(5) P(t) = —yP(t),
N(t) = —6N(t),

which is clearly delay-invariant and globally asymptotically stable, thus by Theorem
3 this model has bounded trajectories. Next, applying analysis of linearization of
the system at the equilibriums (it is done in [35, 36]), if in both equilibriums the
system has unstable linearization, then according to the proven global boundedness
and the Yakubovich’s oscillation theory [33] the system is oscillating. The results
of the system simulation (with the parameters v = 0.2, § = 0.05, 7 = 1, a = 1.77,
b=1 and h = 12 calculated in [35, 36]) are shown in Fig 4.
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FIGURE 5. Trajectories of the model from [37]

Following [37] consider another model of the blood cell production, where the
nonlinear coupling function 5 depends on the total concentration of proliferating
and nonprolifirating cells S(t) = N(¢) + P(t):

S(t) = —68(t)+e"B[S(t — T)N(t —7),
N(t) = —6N(t)— BISE)IN(t) +2eTBIS(t — )N (t — 7),

all parameters have the same meaning as before.

If we would try to calculate approximation at infinity of this system with the
weights r = [1 1], in order to analyze its global stability using Theorem 3, we cannot
arrive to a conclusion since this approximation does not exist. Indeed, according to
definition of local homogeneity, the limit for A\g = +00 should be uniform on S,., for
the term S[S]N the point where S = 0 is singular and a uniform on S, limit does not
exist. However, in [37] it is shown that this system has only nonnegative solutions.
In fact it is possible to show that the cone K = {(S,N) € R% : S > eN} for some
0 < € < 40 is forward invariant for the system. Indeed, define y = .S — eN, then

§(t) = —6y(t) + eBSOIN () + (1 — 26)e =TS (t — T)|N(t — 7)

and on the line y = 0 we have y > 0 provided that € < 0.5. Therefore, if y(0) > 0,
then y(t) > 0 for all ¢ > 0, that is equivalent to forward invariance of K. In this
case, in order to calculate the system homogeneous approximation at infinity on
K, it is sufficient to compute a limit uniformly on S, N K, where it exists and the
system has the same approximation dynamics at infinity (5). For the parameters
0 =005 7 =25 a=177,b=1and h = 12 [37] the system has unstable
linearization in both equilibriums, therefore following [33] it is oscillating in the

sense of Yakubovich. The corresponding trajectories are shown in Fig. 5.
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7. CONCLUSIONS

The homogeneity notion is extended to time-delay systems (nonlinear differential
equations with functional arguments). It is proven that a local stability notion for
homogeneous time-delay systems with d = 0 holds globally, that simplifies analysis
of such a type of systems applying linearization at the origin, for instance. The
sufficient conditions for stability /instability of homogeneous systems are presented.
These conditions are based on the Razumikhin stability arguments. It is shown on
a counterexample that development of the Lyapunov-Krasovskii approach is tricky
for a generic homogeneous case. It is also shown that if a homogeneous system
has a homogeneous Lyapunov-Razumikhin function, then under a mild structural
condition (dealing with degree of homogeneity) it is ISS. The definition of local
homogeneity is proposed, relations between stability /instability of the locally ap-
proximating dynamics and the original system are established. Efficiency of the
proposed approach is demonstrated on examples.
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