Quicksort algorithm again revisited

Abstract : We consider the standard Quicksort algorithm that sorts n distinct keys with all possible n! orderings of keys being equally likely. Equivalently, we analyze the total path length L(n) in a randomly built \emphbinary search tree. Obtaining the limiting distribution of L(n) is still an outstanding open problem. In this paper, we establish an integral equation for the probability density of the number of comparisons L(n). Then, we investigate the large deviations of L(n). We shall show that the left tail of the limiting distribution is much ''thinner'' (i.e., double exponential) than the right tail (which is only exponential). Our results contain some constants that must be determined numerically. We use formal asymptotic methods of applied mathematics such as the WKB method and matched asymptotics.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 1999, 3 (2), pp.43-64
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 13 mars 2014 - 16:47:40
Dernière modification le : mercredi 29 novembre 2017 - 10:26:20
Document(s) archivé(s) le : vendredi 13 juin 2014 - 12:01:36


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00958926, version 1



Charles Knessl, Wojciech Szpankowski. Quicksort algorithm again revisited. Discrete Mathematics and Theoretical Computer Science, DMTCS, 1999, 3 (2), pp.43-64. 〈hal-00958926〉



Consultations de la notice


Téléchargements de fichiers