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We prove the existence of an invariant ri@gX, ..., X,]* generated by elements with a total degree of at pst
which has no finite SAGBI basis with respect to any admissible order. Ther@faréhe optimal lower bound for the
total degree of generators of invariant rings with such a property.
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In[2], the structure of SAGBI$ubalgebraAnalogue taGrobnerBasis forl deals [5]) bases for invariant
rings of permutation groups with respect to the lexicographical otdgy with X7 >jep ... >0 X
was investigated. It turned out that only invariant rings of direct products of symmetric groups have a
finite SAGBI basis, which is then, in addition, multilinear. Of course, it would be of interest to have
such a strong characterization with respect to any other admissible order [4, 6]. To achieve this seems
to be all but trivial. One step towards the understanding of the behavior of SAGBI bases for invariant
rings with respect to any admissible order is the investigation of important special cases. Recently, the
non-finiteness of SAGBI bases f@fX;, X», X3]((123)) with respect to any admissible order was proven
in [3]. In addition, it was shown that with respect to the number of varialilgk; , X, X3]((123) is the
“smallest” unique example for such a ring of polynomial invariants of a permutation group.

In this note, we show the existence of an invariant ring generated only by polynomial invariants with a
total degree of at mog, which has no finite SAGBI basis with respect to any admissible order. Hence,
2 is the optimal lower bound, because any invariant ring generated by polynomial invariants with a total
degree of at modt has for trivial reasons a finite SAGBI basis. In addition, we can show that our example
has with respect to this property the minimal number of variahjéswe restrict ourself to polynomial
invariants of permutation groups, and the minimal group o2der

We briefly recall our notation, and then state and prove our result.
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The natural and complex numbers are denote fandC,

K[Xy,...,X,]is the commutative polynomial ring ovéf in the indeterminateXy, ..., X,,

T is the set of terms (= power-products of thg) in K[X7,..., X,],

GL(K,n) denotes the general linear group o¥&r

G < GL(K,n) a permutation group,
¢ ands,, the symmetric group af symbols.

A polynomial f € K[X4,...,X,] is calledT-invariant, if
f=n(f)= f(z ariXi, - - -,Zam'Xi) Vi = (aij)i<ij<n € T < GL(K,n). (@)}

The ringK[X4, ..., X,]" denotes thd(-algebra ofl -invariant polynomials ik [ X, ..., X,], and
orbitr(f) = Z D 2)
pe{n(f)|mer}
theT-invariant orbit of f. An admissible ordex on the set of term%’ is such that
t>1V1 # teT and st; > sty Vs, t1,to €T with ¢; > to [4, 6] (3)

HT(f)istheleading term of € K[X;,...,X,] with respect to a given admissible orderandHC'(f)
denotes its coefficient. A term= X' ... X¢~ is called multilinear iff{eq, ..., e,} C {0,1}.

Lemmal LetG = ((12)(34)). ThenC[X1, X2, X3, X4]¢ is generated by
B ={Xi+ Xy, X1Xo, X3+ Xy, X3Xy, X1 X4 + XoX3}. (4)

Proof A close look at thes-invariant orbits ofC[ X1, X, X3, X4]¢ via the reduction technique described
in [1] shows that we only have to find a representationdit s (X7 X3), orbitq(X1X3), orbite (X7 X4),
andorbitg (X1 X}) in terms of the elements d@. We have

orbitg (X7 X3) = (X1 +Xo)(X1 X5+ X2Xy) — (X1X5) (X5 + Xy),

orbita(X1X2) = (Xs+ Xa)(X1Xs + XaXs) — (XaX) (X1 + Xa),

orbitg(X7Xs) = (X1 +Xo)(X1 Xy + X2X;3) — (X1X5)(X3 + Xy4), and

orbitg(X1X7) = (Xz+ Xa)(X1 X3 + X5 Xy) — (X3X4) (X1 + Xa),
with

XXy + XoXs = (X1 4 X2)(Xs + Xa) — (X1 X4 — XaXa).

For any other non-multilinear speciatbitq (X;* X35> X3 X;*) not listed so far, we havey,e; > 0 or
e3,eq > 0, i.e. we can rewrite these orbits as

(X1Xo)orbitg (XX 1 XE X5 (5)
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or
(X3X4)orbitg( XS X2 X1 X471, (6)

This completes the proof of the lemnia.
Lemma?2 LetG = ((12)(34)). ThenC[X4, ..., X,,]¢ has no finite SAGBI basis with respecttg. .

Proof The permutation grou@ is not a direct product of symmetric groups. So, following [2],
C[X1, X2, X3, X4]% can not have a finite SAGBI basis with respeckt@,. O

Theorem 3 Let G = ((12)(34)). ThenC[X1, X2, X3, X4]¢ has no finite SAGBI basis with respect to
any admissible ordet.

Proof Assume thatC[X;, X», X3, X4]¢ has a finite SAGBI basi®? with respect to<, and assume
further w.l.o.g. thatX; > X,, X3 > X4, andX; > X3. Then we have eithek, > X3, or X3 > X,.
And further, the basi® contains the multilinea-invariant orbits

{ X1+ Xa, XuXo, X1 X4 + XoX3, X3+ X4, X3X4} @)
and a finite number of non-multiline&#-invariant orbits of the form
Veres = X7 X5 + X5 X352 (8)

with e; # ea > 1. Note that the leading term @f = X; X, + X2 X3 is with respect ta< not determined

so far. Our goal is now to construct an infinite sequence of leading tigtms t2, . . . of G-invariant orbits
such that almost all of these terms are not generated by products of leading terms of the polyndsnials in
Let

. _ [ HT(orbita(X,X3)),if HT($) = X1 X4
7 1 HT(orbite(X3Xs)), otherwise,

and |et80 = X4, if to = Xle, so = Xo2X3, if to = XQX:?, so = Xo, if to = X22X3, andso =
X1 X, otherwise. Furthermore, far > 1, definet; = HT (orbitg(t;i—15i-1)), and lets; = s;_1, if
ti =t 18i_1, and let

[ XX, if o = X5t X2
5= { X$1X%, otherwise.
For alli € N, we havet; is X{' X ? or X;' X2 with 1 < e; < eo, if HT'(¢) = X;X4, and with
e1 > ey > 1, otherwise (see Figure 1 on the following page for an example sequence). The total degree
of t;, is always smaller than the total degreetgffor i; < i2 € N, ands; is never a leading term of a
G-invariant orbit for alli € N.
Our selection of the;, i € N ensures that the sequence of leading tegns, ta, . . . in C[ X1, X2, X3, X4]¢
has by construction the following properties: Fitstis never a product of terms in

Wit = {X1, X1 Xo, HT (1), X3, X3X4} U {to, ..., t;_1} Vi€ N. 9)

Each product of terms i#;_; matching the exponent 0f, (X3) is unable to match simultaneously the
exponent ofX; (X5), if t; = X7 X§? (X5 X5?). Second, all other leading terms@jiX;, X, X3, X4]¢
have an expression as a product of termbin= { X1, X1 Xo, HT(¢), X3, X3X4} U {to,t1,12,...}.
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Altogether, this implies that any with a sufficiently large total degree has no expression as a product
of leading terms of the polynomials in the finite g8t Hence, there exists no finite SAGBI basis of
C[X1, Xa, X3, X4]¢ with respect to< (contradiction).0

Figure 1 illustrates the way of the sequeriggety, to, .. .thru the terms in question with respect to a
given admissible ordet. The upper (lower) half of the figure shows the first coupl&§f X ;2 (X5* X5?)
terms denoted by;..ex (.ejez.) With 0 < e; < es. We can see in this example that = X; X2
(80 = X4), tl = X2X33 (31 = X2X§), t2 = Xsz?? (32 = X2X§), t3 = XIBXZ (83 = XIZXE),
ty = X15Xi2 (84 = X12X45), and soon. The sé¥ = {Xl,XlXQ,X1X4,X3,X3X4} U {to,tl,tg, .. }

1.3 2.3

1.4 2.4 3.4

1.5 2.5 3.5 4.5

1.6 2.6 3.6 46 5.6

1.7 2.7 4.7 5.7 6.7

4.8 5.8 6.8 7.8

4.9 5.9 6.9 7.9 8.9

4.10 5.10 6.10 7.10 8.10 9.10

5.11 6.11 7.11 8.11 9.11 10.11

2 6.12 7.12 8.12 9.12 10.12 11.12

1.8 2.8 3.8
19 29 3.9
1.10 2.10 | 3.10
111 2.1 | 3.11 | 4.11
112 2.2 | 3.12 4.12
1.13 2.3 | 3.13 4.13 513 6.13 7.13 8.13 9.13 10.13 11.13 12.13

1.14 2.14 | 3.14 4.14 5.14 ‘\\6“14 7.14 8.14 9.14 10.14 11.14 12.14 13.14

.15, 35, 45,

.16. .26. .36 46. 56.

17, 27. 37. 4T 57. 67.

.18. 28 .38. 48. .58. 68. .78.

19, 29, .39, 49, 59. 69. 79, 89,

.110. .210. .310. .410. .510. .610. .710. .810. .910.

111, 211 311 411 511 611. .711. .811. .911. .101L

112, 2120 312, 412, 5512, 612 712, .812. .912. .1012. .1112

113 213, .313. 413 513 613 .713. .813. .913. .1013. .1113. .1213.

114, 214 314, 414 514 614 714, .8 14. 914, 1014, 1114, .1214. .1314.

Fig. 1: The leading term pattern for a given admissible order

separates the terms in the $&f7" X7, X5' X3 |0 < e; < e2} into leading terms (font: times-bold) and
other terms (font: times-roman) such that eith&f X ;> or X' X3* is a leading term, and such that any
other leading term if€[ X, X», X3, X4]¢ is a product of terms ifi’.

The invariant ringC[X1, . .., X,]* is generated by polynomials with a total degree of at ridastplies
thatI' is the trivial group, and that the generators &g ..., X,,. Hence._2 is the smallest possible and
therefore optimal lower bound for the generators of an invariant ring without a finite SAGBI with respect
to any admissible order. Furthermore, we must H&ye> 2 for anyC[ X, . .., X,,]' with this property,
i.e. our example is minimal with respect to the group order, becg|se 2.
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Lemma4 Letn < 4, and letC[X1, ..., X,,]¢ be generated by elements with a total degree of at Bost
ThenC[X1, ..., X,]¢ has a finite SAGBI basis.

Proof Gis eitherSl, S1 x S1, 82,81 xSy, 8y xS7,0rS; x 81 x 51, i.e. (C[Xl, .. .,Xn]G has a finite
SAGBI basis (Cf. [2]).O

Hence,C[X1, Xa, X3, X4]¢ with G = ((12)(34)) is, in addition, minimal with respect to the number
of variables, if we restrict ourself to polynomial invariants of permutation groups. Note that these results
hold not only for the fieldC but for any ringR, because our arguments are basedzenvariant orbits.
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