A Degree-Decreasing Lemma for (MOD_q-MOD_p) Circuits

Abstract : Consider a (MOD_q,MOD_p) circuit, where the inputs of the bottom MOD_p gates are degree-d polynomials with integer coefficients of the input variables (p, q are different primes). Using our main tool ―- the Degree Decreasing Lemma ―- we show that this circuit can be converted to a (MOD_q,MOD_p) circuit with \emphlinear polynomials on the input-level with the price of increasing the size of the circuit. This result has numerous consequences: for the Constant Degree Hypothesis of Barrington, Straubing and Thérien, and generalizing the lower bound results of Yan and Parberry, Krause and Waack, and Krause and Pudlák. Perhaps the most important application is an exponential lower bound for the size of (MOD_q,MOD_p) circuits computing the n fan-in AND, where the input of each MOD_p gate at the bottom is an \empharbitrary integer valued function of cn variables (c<1) plus an arbitrary linear function of n input variables.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2001, 4 (2), pp.247-254
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00958960
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 13 mars 2014 - 16:53:28
Dernière modification le : mercredi 29 novembre 2017 - 10:26:23
Document(s) archivé(s) le : vendredi 13 juin 2014 - 12:09:28

Fichier

dm040213.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00958960, version 1

Collections

Citation

Vince Grolmusz. A Degree-Decreasing Lemma for (MOD_q-MOD_p) Circuits. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2001, 4 (2), pp.247-254. 〈hal-00958960〉

Partager

Métriques

Consultations de la notice

70

Téléchargements de fichiers

265