The Stack-Size of Combinatorial Tries Revisited

Abstract : In the present paper we consider a generalized class of extended binary trees in which leaves are distinguished in order to represent the location of a key within a trie of the same structure. We prove an exact asymptotic equivalent to the average stack-size of trees with α internal nodes and β leaves corresponding to keys; we assume that all trees with the same parameters α and β have the same probability. The assumption of that uniform model is motivated for example by the usage of tries for the compression of blockcodes. Furthermore, we will prove asymptotics for the r-th moments of the stack-size and we will show that a normalized stack-size possesses a theta distribution in the limit.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2002, 5, pp.1-16
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 13 mars 2014 - 16:54:26
Dernière modification le : mercredi 29 novembre 2017 - 10:26:22
Document(s) archivé(s) le : vendredi 13 juin 2014 - 12:06:14


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00958969, version 1



Markus E. Nebel. The Stack-Size of Combinatorial Tries Revisited. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2002, 5, pp.1-16. 〈hal-00958969〉



Consultations de la notice


Téléchargements de fichiers