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We find generating functions for the number of strings (words) containing a specified number of occurrences of certain
types of order-isomorphic classes of substrings called subword patterns. In particular, we find generating functions
for the number of strings containing a specified number of occurrences of a given 3-letter subword pattern.
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1 Introduction

Counting the number of words which contain a set of given strings as substrings a certain number of times
is a classical problem in combinatorics. This problem can, for example, be attacked using the transfer
matrix method (se€ 120, Section 4.7]). In particular, it is a well-known fact that the generating function
of such words is always rational. For example, [in [20, Example 4.7.5] it is shown that the generating
function for the number of words i{3]" where neither 11 nor 23 appear as two consecutive digits is given
by
34+x—x2

1-2x—x2+x3°

In this paper, we present, in several cases, a complete solution for the problem of the enumeration of
words containing aubword patterr{see below for the precise definition) of lengitexactlyr times. For
example, we find the number of words[Bj" containing the subword pattern 111 exactlymes, that is,
the number of words which contain 111, 222, and 333 as substrings a totérefs.

Régnier and Szpankowski]18] used a combinatorial approach to study the frequency of occurrences of
strings (which they also called a “pattern”) from a given set in a random word, when overlapping copies
of the “patterns” are counted separately (seé [18, Theorem 2.1]). We note that the term “pattern” in [18]
is used to denote an exact string rather than its type with respect to order isomorphism. For example, the
“pattern” 112 in [18] is the actual string 112, whereas in our setting an occurrence of the subword pattern
112 is any substringab of the ambient string witla < b. Although, in principle, it is possible to deduce
our results from the result by&gnier and Szpankowski, our direct derivations are much simpler.
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2 Alexander Burstein and Toufik Mansour

Goulden and Jackson12] also consider sequences with distinguished substrings and use the term “pat-
tern of a sequence”. However, their “pattern” is more locally defined than in this paper in that only order
relations between adjacent elements of a string are considered, rather than order relations between any
pair of elements of a string, as is done in this paper. For example, the pattern “rise, non-rise;X9r
ormTR) as defined in12] includes the subword patterns,122 132 231 as defined in this paper. How-
ever, we show that each of the subword patterns 124, 132 is avoided by a different number of words
(of a given length on a given alphabet) than the other two patterns.

In what follows, we use analytical and combinatorial means to find a complete answer for several cases
of counting strings with a specified number of occurrences of certain patterns.

1.1 Classical patterns in permutations

Lette S, andt € S, be two permutations. Aaccurrenceof Tin Ttis a subsequencedii <iz <--- <
im < nsuch that(m(iy),...,m(im)) is order-isomorphic ta. In this contexty is usually called gattern
We denote the number of occurrences af by 11(1).
Recently, much attention has been paid to the problem of counting the number of permutations of length
n containing a given number> 0 of occurrences of a certain pattarrMost of the authors consider only
the case = 0, thus studying permutatiosoidinga given pattern. Only a few papers consider the case
r > 0, usually restricting themselves to the patterns of length 3. In fact, simple algebraic considerations
show that there are only two essentially different cases 3, namely,t = 123 andt = 132. Noonan
[186] has proved that the number of permutation§jrcontaining 123 exactly once is given lﬁ’){ﬂs).
A general approach to the problem was suggested by Noonan and Zeilkierger [17]; they gave another
proof of Noonan'’s result, and conjectured that the number of permutatidsdontaining 123 exactly

twice is given by%ﬁ?ﬁf—%(nﬂ) and the number of permutations $; containing 132 exactly once
2n—-3

is given by( n73). The first conjecture was proved by Fulméki[11] and the second conjecture was proved
by Bbna in [3]. A general conjecture of Noonan and Zeilberger states that the number of permutations
in S, containingt exactlyr times isP-recursive inn for anyr andt. It was proved by Bna [2] for

T = 132. However, as stated inl [2], a challenging question is to describe the number of permutafpns in
containingt € S exactlyr times, explicitly for any givem. Later, Mansour and Vainshtein]15] suggested

a new approach to this problem in the case 132, which allows one to get an explicit expression for the
number of permutations i, containing 132 exactly times for any given.

1.2 Generalized patterns in permutations

In [I], Babson and Steingnsson introduced generalized permutation patterns that allow the requirement
that two adjacent letters in a pattern must be adjacent in the permutation. For example, an occurrence of a
generalized pattern 12-3 in a permutatios: a;a, - - - an is a subwordy;a;.1a; of tsuch thal; < a1 <

aj.

Notation 1.1 Unfortunately, there is a bit of confusion in denoting classical and generalized patterns. Be-
fore generalized patterns were introduced, the hyphens were unnecessary, hence classical patterns (those
with all possible hyphens) are often written with no hyphens when generalized patterns are not considered,
and with all hyphens when they are. For example, a classical pattern 123 is now denoted by 1-2-3 when
considered as a generalized pattern (using the notation of [1, 7]). Unless otherwise stated, all patterns
under consideration from now on are generalized patterns.
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In [T0] Elizalde and Noy presented the following theorem regarding the distribution of the number of
occurrences of any generalized pattern of length 3 without hyphens.
Theorem 1.2 (Elizalde and Noy[[T0]} et h(x) = 1/(x— 1)(x+3). Then

(123 ﬂ . 2h(x)e%(h(x)*x+l)t
n;nezsn N h(x)4+x+ 14 (h(x) —x— 1)’
21yt 1
n;n; n o 1— [fe-D2/2d7

wheret(123) (respectivelyri(213)) is the number of occurrences of theneralizegattern123(respec-
tively, 213) without hyphens imt.

On the other hand, Claessan [7] gave a complete answer for the number of permutations avoiding
a generalized pattern of the forry-z wherexyze S;. Later, Claesson and Mansouir [8] presented an
algorithm to count the number of permutations containing a generalized pattern of the/faewractlyr
times for any givem > 0, wherexyze Ss.

Theorem 1.3 (Claesson and Mansour [8[he ordinary generating function for the number of permuta-
tions of length n avoiding the generalized patt&éa3 (or 23-1) is

xK

2 (1-x)(1—2x)---(1—kx)

k>0

The ordinary generating function for the number of permutations of length n avoiding the generalized

pattern2-13is
1-V1-4x
o

The ordinary generating function for the number of permutations of length n containing exactly one
occurrence of the generalized pattet®-3 is

X kyktn
P2 WGy e e

The ordinary generating function for the number of permutations of length n containing exactly one
occurrence of the generalized patte28-1 is

X kktn
ngll—(n—l)xk;) 1—x)(1—20- - (1= (k+nx)

C(x) =

The ordinary generating function for the number of permutations of length n containing exactly one
occurrence of the generalized patteé?113is

x3C(x)”

1-tC(x)2"
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1.3 Generalized patterns in words

A generalized patterrt is a (possibly hyphenated) string [A™ which contains all letters fronY] =
{1,...,¢}. We say that the string € [k]" containsa generalized patterexactlyr times (denoted by

r = o(1)) if o containsr different subsequences isomorphicttin which the entries corresponding to
consecutive entries af not separated by a hyphen must be adjacent. We call the generalized patterns
without hyphensubword patternsif r = 0, we say that avoidst and writec € [k]"(T). Thus,[k]"(T)
denotes the set of strings |R|" (i.e., n-long k-ary strings) which avoid. For example, a stringt =
ajay...a, avoids the generalized pattern 12-Iifias no subsequeness1a; with j > i+1 andg =

aj <agjy1.

Example 1.4 Davenport-Schinzel sequencés [9] can be defined in terms of subword pattern avoidance
as follows. For anyd > 1, let Ty be the set of all the subword patterms= ajaz---ag+1 € [d+ 1]d+1

such that eithesy; < apj11 > apjio for all j, or apj_1 < ap; > apj41 for all j. For example,T, =
{121,132 231,212 213 312}. An k-ary n-long sequence avoiding the subword pattern 11 (i.e., with no
equal consecutive letters) and avoiding all the subword patterfig (ifiere are no alternating subwords

of length greater thad + 1) is called a Davenport-Schinzel sequenagig maximal.

Let fr.r(n,k) be the number of words € [k]" such thaio(t) = r. Denote the corresponding bivariate
generating function b¥ (x,y; k), in other words,

Fe (X Y;K) Z{)%ftrnk

Burstein [4] gave a complete answer for the numbieggn, k) wheret is a 3-letter classical pattern.
Later, Burstein and Mansourl [5, 6] presented a complete answer for the ndmiferk) wheret is a
generalized pattern of length 3 (a word of length 3).

In this paper, we present a complete answer for several cades(ofk) wheret is a subword pattern
of lengthl (which is the analogue of the results by Elizalde and NoyCin [10]). In particular, we find a
complete answer for the cake- 3.

2 Counting a subword pattern of length |

In this section we find~ (x,y; k) for several cases af Burstein and Mansoufl[6] fourf (x, y; k) for the
subword patterm = 11...1 € [1]' and proved the following theorem.

Theorem 2.1 (Burstein and Mansouf][6, Th. 2.10ett = 11...1 < [1]' be a subword pattern. Then

+(1-y)x3 k) — (1-y)(k—1) 3y %) d(kx)
— (k= 1+y)x— (k—1)(1-y)(1-x-2) 2

Fe(x,y;k) =

2.1 The subword patternt=11...12
Lett=11...12¢ [2]' be a subword pattern. Defing, (n, k) to be the number of words < [K]" such that
(B,k—+ 1) containst exactlyr times, and denote the corresponding generating function by

De(%,y; k) = z der (0, k)XY

nr>0
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Let us find a recurrence fd.

Leto € [K]" (k > 2), with o(T) = r, contain exactlyd copies of the lettek. If d =0, theno € [k—1]"
ando(t) =r. If d > 1, theno = o1kop, whereo; € [k— 1], 02 € [K]"2, g +np+ 1 = nand(o1, k) (1) +
02(1) = r. Taking generating functions, we see that the above translates into

Fr(%,y:K) = R (XY k= 1) + XD (X, y; k= 1) (x,y; K),
or, equivalently,
Fr(xy,k—1)
1—-XxDi(x,y;k—1)°
Let us now find the recurrence f@x. Let o € [K|" be such thato,k+ 1) containst exactlyr times,

and has exactld lettersk. Theno = aikozk. ..kogkog 1 for someg; € [k—1]", 1 <i < d+1, where
n+---+ngy1 =n—dand

F(xy;k) =

(01,K)(1) + -+ (04,K) (1) + (0g+1,k+ 1) (1) + (0o ends orl —1Ks) =
Taking generating functions, we obtain

| -2
Dr(%,Y;K) = dz XD (x, y k— 1)
=0

+Z (Dd“xy,k 1) - D@Dy vk —1)

+yDID D (o yr— 1)),

which, after summing ovet, yields

(1-X"H(1-y)De(x y:k—1)

Dr(x,y;k—1) = 1— XDy (X, y;k— 1)

These two recurrences, together with(x, y; 0) = F;(x,y; 0) = 1 and induction ork, yield the following
theorem.

Theorem 2.2 Lett = 11...12 ¢ [2]' be a subword pattern such that! 1; then

1-y

FT (Xv Y k) =
Example 2.3 (see Burstein and Mansour [6, Th. 3.10]) Letting 3 andy = 0 in Theoren] Z]2, we get
that the generating function for the number of wordgif avoiding the subword pattern 112 is given by

1
1 1 .
1—;(+>—((1—X2)k

In the special case dof= 3, we get from Theorern 2.2 the following result.
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Corollary 2.4 The generating function for the number of wordg2H' containing the subword pattern
112exactly r times is given by
X3r

(1_ X)”l(l— X — XZ)r+1‘

Proof: Lett =112 be a subword pattern. It is easy to see that a word2]" with o(t) = r must have
the formo = 01105T... 1041, for someoy, ..., 01 € [2]"(T). Now, from Exampld 2|3 witlk = 2, we

have that(x;2) = W{H@) hence the result follows. O

2.2 The subword pattern T =211...112

Lett=211...112¢ [2]' be a subword pattern. We defidg(n, r;Kk) to be the number of wordg € [k]"
such thatk+ 1, 3,k+ 1) containst exactlyr times, and denote the corresponding generating function by
D:(x,y;k). Leto € [K" such thaio(t) = r, and such that containsd occurrences of the lettés For
d = 0, the generating function for the number of such wards given byF (x,y;k— 1), and ford > 1,
by xdF2(x,y;k — 1)D9-1(x,y;k — 1) (since in that case = opkaik. .. kag_1kag, where allo; € [k—1]™,
Y ni =n—d, ando(t) = 0g(1) + (K,01,K) (1) + - - - + (K, 04-1,K) (1) + 04(T)). Hence, if we sum over all
d >0, we get
XF2(x,y;k—1)
1—xDi(x,y;k—1)°

On the other hand, the woré+ 1,3,k + 1), with B as above, contains an occurrence afvolving the
two lettersk+ 1 if and only if B is a constant string of length- 2, otherwise(k+ 1, ,k+ 1)(t) = B(1).
Taking generating functions, we obtain

Fe(xy; k) = Fe(xy;k—1) +

De(x,Y:K) = kX “2y+ Fe(x y; k) — k¥ 2.
Therefore, using the initial conditiof%(x,y; 0) = D;(X,y; 0) = 1 and induction otk, we get the following
theorem.
Theorem 2.5 Lett = 211...112¢ [2]' be a subword pattern and 2, then

1
F(x,y;K) = )
1-X=XS o0 T iy

Example 2.6 (Burstein and Mansoufl[6, Th. 3.12]) Lettihg= 3 andy = 0 in Theoreni Z]5, we get that
the generating function for the number of wordgk}i' avoiding the subword pattern 212 is given by
1

k=1 1
1=X=x3} 0 1je

2.3 The subword pattern T = mt’m
Theorem 2.7 Lett = nt'm < [m]' be a subword pattern, wher does not contain m. Then forkm,

1

k—1 1
1-(M=1)X—X3jm 1 T (I N1y

Fe(x,y;K) =
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Proof: Leto € [K". The generating function for the number of worlsvhich do not contairm and
containt exactlyr times is given by~ (x,y;k—1). Now assume that the leftmostin o is at position
i. Theno = o1mo, anda(t) = 01(T) + (M, 02)(1), so the generating function for the number of such
wordso is given byxF (x,y;k— 1)D:(x,y; k), whereD(x,y; k) is the generating function for the number
of wordso € [K]" such tha{m, o) containst exactlyr times. Therefore,

Fe(X,y;K) = Fe (X, y;k— 1) + xR (X, y; k— 1) D (X, y; K).

On the other hand, le’ = (m,0) € [k]"™*. If o does not contaim, then the generating function for the
number of suclo is given byF;(x,y;k— 1). Otherwise, let be the position of the leftmost letter and
let o|i be the left prefix of of lengthi, then the generating function for these words is given by

X (FT(x,y; k—1)—xX—2 <rl;__:;)> D:(x,Y; K)

if (m,ol;i) is not order-isomorphic to, or by

xyx 2 (:1__ i) Dr(x,Y;K)

if (m,ol;) is order-isomorphic ta. Therefore,

Dr(%,Y; K) = Fe(X,y;k— 1) +-x (FT(x,y;k— 1) —x2 (::_i)) De(X,y; k)

k—1

-1 .
—'_y)J <m_1) DT(vav k)
Hence, from the above two equations, we obtain

<1+x' Y- y))FT(x,y;k—l)
1+xX-1( D (A —y) —xR(xy;k—1)

Fu(xy,k) =

S0, by induction ork with the initial conditionF (x,y;m—1) = we get the desired result. O

(m 1)x?
Example 2.8 Applying TheorenfZ]7 to the subword patterns 2112 and 3123, we get
1

Fa112(X,y; k) = T
1-x- XZJ 01+jx3(1 y)
1
Fa123(X,y; k) = I :
1= X X3 T Dz

Definition 2.9 We say that the patterrsandy are strongly Wilf-equivalentor are in the sametrong
Wilf class if the number of words ifk]" containingf3 exactly r times is the same as the number of words
n [K" containingy exactly r times, for any b 0.

By TheoremZ]7 and the symmetry operations “reversal” and “complement,” we immediately get the
following corollary.

Corollary 2.10 The subword patterns121and1221are in the same strong Wilf class.
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2.4 The subword pattern T =mt/(m-+1)

Lett = mt/(m+ 1) be a subword pattern, wheredoes not contaimor m+ 1. Note that is in the same
symmetry class agc(1)) = 1r(c(t'))2. This case is treated in a similarl manner as the case=afi’m.
As a result, we obtain the theorem below.

Theorem 2.11 Lett = mt/(m+ 1) € [m+ 1] be a subword pattern, wherédoes not contain m or m 1.
Then for k> m,

1

Fr(x,y;k) = - .
o 1— (M=1x X33 5 Mjmz (1= ()X 1(2-Y)

3 Subword patterns of length 3

The symmetry class representatives of 3-letter subword patterns are 111, 112, 212, 123, 213. In the current
subsection, we find explicit formulas f&¢(x, y; k) for each of these representative§ heoreni Z2]1 yields
the answer for the first class.

Theorem 3.1 Lett = 111be a subword pattern. Then, for allk 0, we have

14+ x(1+x)(1—-y)
k—1+y)x—(k—1)(1—y)x2

FT(X7y; k) = 17(

Theorem$2]2 and 2.5 contain already the answers for the second and the third classes, respectively. Let
us summarize the corresponding results in the theorem below.

Theorem 3.2 Let112and212be subword patterns. Fork 0O,

1-y
FllZ(X7 Y. k) = 9
15 —y+x(1=x(1-y)k
1
Fo1a(X,y:K) = I

K .

Now let us find the generating function for the fourth clasgx,y; k) wheret = 123 is a subword
pattern. LetD:(x,y; k) be the generating function for the number of wodds [K]" such that(c,k+ 1)
contains the subword pattern 123 exagctliimes. Suppose a word € [k]"(T) has exactiyd lettersk.
Theno = ogkaik...kag, where allo; € [k—1]", and any occurrence ofin ¢ must be either irfo;, k) for
somei =0,1,...,d— 1, orinaq. Therefore, the generating function for the number of such worids
(XDr(x,y;k—1))9F (x,y;k— 1), so

F(xy;k) = dz (XDe (%, Yk — 1)) IR (% y;k— 1).
>0

On the other hand, supposec [K|" is counted byD:(x,y;k). Then(o,k+ 1) = apkaik...kagk+ 1
(whereg; € [k—1]" for all i) contains the pattermexactlyr times. Ifd =0, theno € [k—1)". If d > 1,
there are several possibilities.df # 0 or 64 = 04_1 = 0, then all occurrences of the pattarim (o,k+1)
are in(oj,k) for somei =0,1,...,d—1, orin(og,k+1). If oy = 0 andoy_1 # 0, then there is one extra
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occurrence oft since(o,k+ 1) ends by(a,k,k+ 1) for somea < k. Taking generating functions, we
obtain

De(X,Y;K) =Dr(x,y;Kk—1)
+dz xIDY(x,y;k— 1) (De(x y;k— 1) — 1)
>1

3 XID4(x,y;k—1
+d§1 (XY k—1))

+ dz xIyDE(x,y; k— 1)(Dr(x,y;k— 1) — 1).
>1

Hence,
o Rxyk=1)
oy — (A= x4+ xy)De(x Y k= 1) +X(1-Y)
Dr(X,y;K) = 1—xDr(x,y;k—1)

Together withF(x,y;0) = D:(x,y;0) = 1, F(x,y; 1) = D¢(X,y;1) = 1/(1 —x) and induction ork, this
yields the following result.

Theorem 3.3 Lett = 123be a subword pattern. For all k 2, we have

1
Fe(x,y;k) = i ' ’
(xy:k) 1—kx—3¥_5(~=x)1 () (1~ y) 172U 5(y)

where W(y) = U1(y) = 1, Uzn(y) = (1—y)Uzn-1(y) —Uzn—2(y), and Uns1(y) = Uzn(y) —Uzn-1(y). Fur-
thermore, the generating function fop(y) is given by

1+z+7
U(y)2'= ————.
n;) n(Y) 1+(1+y)2+2
Finally, Theoren{ 211 fok = 3 andm = 2 provides already the answer for the last class. The corre-
sponding result is summarized below.
Theorem 3.4 Lett = 213be a subword pattern. Then for allk 2, we have
1

ROy = 1-x=x355 M=o~ X2(1-y))

4 Further results

We say that a subword patterre [m]' is primitive if any two distinct occurrences afmay overlap by at
most one letter. For example, the subword patterns 112, 121, 122, 132, 211, 212, 213, 221, 231, and 312
are all the primitive patterns of length three.

Theorem 4.1 Lett, T € [m]' be two primitive subword patterns such that there exists a permutétio
with ®(1) =1, (1) =l and v = ®o1. In other wordst andt’ have the same supply of each letter, the
same first letter and the same last letter. Themdt’ are in the same strong Wilf class.
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Proof: Let o € [K" containt exactlyr times. Sincet is a primitive subword pattern, we can define a
function f which changes any occurrence ©fn ¢ to an occurrence of’. It is easy to see from the
definition of primitive patterns thaft is a bijection, hence the theorem follows. O

An immediate corollary is the following.

Corollary 4.2 The subword patterns232and1322are in the same strong Wilf class.

Theorem 4.3 All primitive subword patterns € [m]' such thatt(1) = a andt(l) = b, where a< b, are
in the same strong Wilf class.

Proof: Similarly as in the proof of Theorem 2.7, we get
Fe(xy;:K) = Fe(xy;k—=1) + xR (x,y;k—1)De (x,y; ki @),

whereD:(x,Y; k; h) is the generating function for the number of words [K]" such thath, o) containst
exactlyr times.

Now let us consider the case=a+ p(b—a). Leto = (0’,h+b—a,d”), whered’ is a word on the
letters in[k] which does not contaih+ b — a. Using the fact that is a primitive subword pattern, we get

D:(x,y;k;h) = D:(x,y; k— 1;h)

+x'1y(h_1> (k_ (h+b_a)> Dr(x,y;kh+b—a)

a—1 m—b
_»(h—1\ (k—(h+b—a)
e 1) g2 e _
+X{Fr(x,y,k 1)—x <a—l>< m—b ﬂ D:(x,y;k;h+b—a).
Hence, by induction op andk, usingF(x,y;m—1) = 1/(1— (m—1)x) andD(x,y; k;h) = 0 forh > k,
we get the desired result. O

Using the proof of the above theorem, we get the following generalization.

Corollary 4.4 Lett,7 € [m]' be two primitive subword patterns such thél) = v(1) = a andt(l) =
T(l) = b, where a< b. Then the subword patterns

aa...atbh...bb and aa..at'b...bb
—— —— ==
p p p p
are in the same strong Wilf class.
TheorenT4]3 implies as well the following corollary.
Corollary 4.5
1. The subword patterrkl32 1232 1322 and1332are in the same strong Wilf class.

2. The subword patterris432and1342are in the same strong Wilf class.

Theorem 4.6 Let 1211 € [m]'*2 be a primitive subword pattern, and letbe the same pattemwith 1
replaced by2. Then the subword patterd@r13 and12t'23 are in the same strong Wilf class.

Proof: If o € [k]" contains 1213 exactlyr times, then we define’ as follows. If(oi,...,0i41+3) is an
occurrence of 1213, then we definei’ﬂ- =0+ 1 for all j such thaioj, j; = gj. The functionf defined
by f(0) = ¢’ is a bijection since 1L is a primitive subword pattern. O

Corollary 4.7 The subword patterns213and1223are in the same strong Wilf class.
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