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Some strings -the texts- are assumed to be randomly generated, according to a probability model that is either a
Bernoulli model or a Markov model. A rare event is the over or under-representation of a word or a set of words.
The aim of this paper is twofold. First, a single word is given. We study the tail distribution of the number of its
occurrences. Sharp large deviation estimates are derived. Second, we assume that a given word is overrepresented.
The conditional distribution of a second word is studied; formulae for the expectation and the variance are derived. In
both cases, the formulae are precise and can be computed efficiently. These results have applications in computational
biology, where a genome is viewed as a text.

Keywords: large deviations, combinatorics, generating fumctions, words, genome

1 Introduction
In this paper, we study the distribution of the number of occurrences of a word or a set of words in
random texts. So far, the first moments, e.g. the mean and the variance, have been extensively studied by
various authors under different probability models and different counting schemes [Wat95, Rég00, Szp01].
Moreover, it is well known that the random variable that counts the number of occurrences converges, in
law, to the normal law [BK93, PRdT95, RS97a, NSF99, FGSV01] when the sizen of the text grows to
infinity. Nevertheless, very few results are known out of the convergence domain, also called the central
domain. This paper aims at filling this gap, as rare events occur out of the convergence domain.

First, we study thetail distribution. We consider a single given word, H1. In [RS97a, NSF99], a large
deviation principle is established; in [RS97a] the rate function is implicitely defined, but left unsolved. In
[RS98], the authorsapproximatethe exact distribution by the so-called compound Poisson distribution,
and compute the tail distribution of this approximate distribution. We provide a precise expansion of the
exact probability out of the convergence domain. More precisely, we derive a computable formula for
the rate function, and two more terms in the asymptotic expansion. This accuracy is made possible by
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the combinatorial structure of the problem. Second, we rely on these results to address theconditional
counting problem. The overrepresentation (or the under-representation) of a word H1 modifies the dis-
tribution of the number of occurrences of the other words. In this paper, we study the expectation and
the variance of the number of occurrences of a word H2, when an other word, H1, is exceptional, that is
either overrepresented or under-represented. Our results on the tail distribution of H1 allow to show that
the conditional expectation and variance of H2 are linear functions of the sizen of the text. We derive
explicit formulae for the linearity constants.

The complexity to compute thetail distributionor theconditional countingmoments is low. As a matter
of fact, it turns out that the problem reduces to the solution of a polynomial equation the degree of which
is equal to the length of the overrepresented word. The approach is valid for various counting models.

These results have applications in computational biology, where a genome is viewed as a text. Available
data on the genome(s) are increasing continuously. To extract relevant information from this huge amount
of data, it is necessary to provide efficient tools for“in silico” prediction of potentially interesting regions.
The statistical methods, now widely used [BJVU98, GKM00, BLS00, LBL01, EP02, MMML02] rely on
a simple basic assumption: an exceptional word,i.e. a word which occurs significantly more (or less)
in real sequences than in random ones, may denote a biological functionality. The conditional counting
problem is adressed when one wants to detect a weak biological signal, the word H2, hidden by a stronger
signal, the word H1 [BFW+00, DRV01].

Section 2 is devoted to the introduction of some preliminary notions and results. The tail distribution
of a single word is studied in section 3. Conditional events are addressed in Section 4.

2 Preliminary notions

2.1 Probability model

Our assumption is that the languages are generated on some alphabetS of sizeV by an ergodic and
stationary source. The models we handle are either theBernoulli modelor theMarkov model.

In the Markov model, a textT is a realization of astationaryMarkov process of orderK where the prob-
ability of the next symbol occurrence depends on theK previous symbols. Given twoK-uples(α1, · · · ,αK)
and(β1, · · · ,βK) from SK , the probability that aβ-ocurrence ends at positionl , when anα-occurrence ends
at positionl −1, does not depend on the positionl in the text. E.g., we denote

pα,β = P((Tl−K+1, · · · ,Tl ) = β|(Tl−K · · ·Tl−1) = α)

These probabilities define aVK ×VK matrix P = {pα,β} that is called thetransition matrix. As the
probabilitypα,β is 0 if (α2, · · · ,αK) 6= (β1, · · · ,βK−1), the transition matrixP is sparse whenK > 1. Vector
π= (π1, . . . ,πVK ) denotes the stationary distribution satisfyingπP = π, andΠ is the stationary matrix that
consists ofVK identical rows equal toπ. Finally, Z is the fundamental matrix Z = (I− (P−Π))−1

whereI is the identity matrix.

Definition 2.1 Given a word z of length|z| greater than or equal to K, we denote P(w|z) theconditional
probability that a w occurrence starts at a given position l in the text, knowing that a z occurrence starts
at position l−|z|+1.
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Given a word w of size|w|, |w| ≥ K, we denote f(w) and l(w) the w-prefix and the w-suffix of length K.
For i in {1, · · · , |w|−K +1}, we denote w[i] the i-th factor of length K. That is

w[i] = wi · · ·wi+K−1

We denote P(w) thestationary probabilitythat the word w occurs in a random text. That is

P(w) = πf (w)

|w|−K

∏
i=1

Pw[i],w[i+1]

It will appear that all counting results depend on the Markovian process through submatrices of the
matrixF(z) defined below.

Definition 2.2 Given a Markovian model of order K, letF(z) be the VK ×VK matrix

F(z) = (P−Π)(I− (P−Π)z)−1 . (1)

It is worth noticing thatF(z) can be reexpressed as a power series inZ.

In the Bernoulli model, one assumes that the text is randomly generated by a memoryless source. Each
letter s of the alphabet has a given probabilityps to be generated at any step. Generally, theps are not
equal and the model is said to bebiased. When all ps are equal, the model is said to beuniform. The
Bernoulli model can be viewed as a Markovian model of orderK = 0.

2.2 The correlation polynomials and matrices
Finding a word in a random text is, in a certain sense, correlated to the previous occurrences of the same
word or other words. For example, the probability to find H1 = ATT, knowing that one has just found
H2 = TAT, is - intuitively - rather good since aT just after H2 is enough to give H1. The correlation
polynomials and the correlation matrices give a way to formalize this intuitive observation. At first, let us
define the overlapping set and the correlation set [GO81] of two words.

Definition 2.3 Theoverlapping setof two wordsHi andHj is the set of suffixes ofHi which are prefixes
of Hj . Thecorrelation setis the set ofHi-suffixes in the associatedHj-factorizations. It is denoted byAi, j .
WhenHi = Hj , thecorrelation setis called theautocorrelation setof Hi .

For example, the overlapping set of H1 = ATT and H2 = TAT is {T}. The associated factorization of H2

is T ·AT. The correlation set isA1,2 = {AT}. The overlapping set of H2 with itself is {TAT,T}. The
associated factorizations areTAT·ε andT ·AT, whereε is the empty string. The autocorrelation set of H2

is {ε,AT}. As any string belongs to its overlapping set, the empty string belongs to any autocorrelation
set.

Definition 2.4 In the Markov model, thecorrelation polynomialof two wordsHi and Hj is defined as
follows:

Ai, j(z) = ∑
w∈Ai, j

P(w|l(Hi))z
|w| .

In the Bernoulli model, thecorrelation polynomialis

Ai, j(z) = ∑
w∈Ai, j

P(w)z|w| .
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WhenHi = Hj , this polynomial is called theautocorrelation polynomialof Hi .
Given two wordsH1 andH2, the matrix

A(z) =

[
A1,1(z) A1,2(z)
A2,1(z) A2,2(z)

]

is called thecorrelation matrix.

Definition 2.5 Given two ordered setsH1 = {H1
1, · · · ,H

q
1} andH2 = {H1

2, · · · ,Hr
2} , let GH1,H2

(z) be the
q× r matrix

(GH1,H2
(z))i, j = F(z)

l(Hi
1),f(Hj

2)
· 1
π

f (Hj
2)

.

2.3 Word counting

There are several ways to count word occurrences, that depend on the possible application. Let H1 and
H2 be two words on the same alphabet. In theoverlapping counting model[Wat95], any occurrence of
each word is taken into account. Assume, for example, that H1 = ATT,H2 = TAT and that the text is
TTATTATATATT. This text contains 2 occurrences of H1 and 4 overlapping occurrences of H2 at positions
2,5,7 and 9. In other models, such as therenewal model[TA97], some overlapping occurrences are
not counted. Although our approach is valid for different counting models, we restrict here to the most
commonly used, e.g. theoverlapping model[Wat95].

When several words are searched simultaneously, we need some additional conditions on this set of
words,H . It is generally assumed that the setH is reduced.

Definition 2.6 [BK93] A set of words isreducedif no word in this set is a proper factor of another word.

The two words H1 and H2 do not play the same role in the conditional counting problem. We can
partially relax the reduction condition.

Definition 2.7 A couple of words(H1,H2) is reduced iff the set{H1,H2} is reduced orH1 is a proper
prefix ofH2.

Remark that, in the case where the set of words is given by a regular expression, this regular expression
must be unambiguous. A discussion on ambiguity in counting problems and algorithmic issues can be
found in [KM97].

2.4 Multivariate Probability Generating Functions

Our basic tools are themultivariate probability generating functions. Let L be some language that is
randomly generated according to one of the models described above. For any integern, let Ln be the set
of words of sizen that belong toL . Given two words H1 and H2, we denoteXi,n with i ∈ {1,2}, the
random variable which counts the occurrences ofHi in a text from this setLn; we denoteP(Xi,n = k)
the probability that Hi occursk times. Theprobability generating functionof the random variableXi,n is
denotedPi,n. We have

Pi,n(u) = ∑
k≥0

P(Xi,n = k)uk .
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Definition 2.8 Given a languageL , the multivariate generating function that countsH1 andH2 occur-
rences in the texts that belong to this languageL is

L(z,u1,u2) = ∑
n≥0

zn ∑
k1+k2≥0

P(X1,n=k1 andX2,n=k2)u
k1
1 uk2

2 .

The multivariate generating function that countsH1-occurrences (only) is

L1(z,u1) = ∑
n≥0

zn ∑
k1≥0

P(X1,n=k1)u
k1
1 = ∑

n≥0
znP1,n(u1) . (2)

Remark: These multivariate generating functions satisfy the equation

L1(z,u1) = L(z,u1,1) .

Moreover,L1(z,1) = L1(z,1,1) is theordinary generating functionof the languageL .

One important language is the set of all possible words on the alphabetS , denoted below byT . Lan-
guageT is also named the language of texts. A general expression for its multivariate generating function
T(z,u1,u2) is derived in [Ŕeg00]. For a single word H1 of sixem1, it depends on H1 through the entire
series of the variablez defined as follows:

D1(z) = (1−z)A1(z)+P(H1)z
m1 +F(z)l(H1),f(H1) ·

1
πf(H1)

. (3)

In the Bernoulli model, this seriesD1(z) is a polynomial.

Proposition 2.1 [RS97a] The multivariate generating function that counts the occurrences of a single
wordH1 of sixe m1, in a Bernoulli or a Markov model, satisfies the equation

T1(z,u1) = T(z,u1,1) =
u1

1−u1M1(z)
P(H1)zm1

D1(z)2 (4)

where

M1(z) =
D1(z)+z−1

D1(z)
. (5)

As a consequence, our counting results only depend on this seriesD1(z). Similarly, for two words
counts, all the results depend on H1 and H2 through the matrixD(z) defined below.

Definition 2.9 Given a reduced couple of wordsH1 andH2 of size m1 and m2, letD(z) be the2×2 matrix

D(z) = (1−z)A(z)+

[
P(H1)zm1 P(H2)zm2

P(H1)zm1 P(H2)zm2

]

+G{H1},{H2}(z) . (6)

We denote, for i, j in {1,2},
Di, j(z) = D(z)i, j
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3 Significance of an Exceptional Word
In this section, we study thetail distribution of the number of occurrences of a single word H1 in a
random textT . In [RS97a], a large deviation principle is established by the Gartner-Ellis Theorem. We
derive below an explicit formula for the rate function and a precise expansion of the probabilities in the
large deviation domain. These results should be compared to [Hwa98] although the validity domains in
[Hwa98] are closer to the central region.

3.1 Sharp large deviations estimates

Definition 3.1 The fundamental equation is the equation (Ea)

D1(z)
2− (1+(a−1)z)D1(z)−az(1−z)D′

1(z) = 0 , (7)

where a is a real positive number satisfying0≤ a≤ 1.

Lemma 3.1 Assume that a> P(H1). WhenH1 is selfoverlapping or when1
m1

> a, there exists a largest
real positive solution of the fundamental equation that satisfies0 < za < 1. It is called the fundamental
root of (Ea) and denoted za.

Proof: Define the function of the real variablez: ra(z) = D1(z)2− (1+(a−1)z)D1(z)−az(1−z)D′
1(z).

It satisfiesra(0) = 0 andra(1) = P(H1)(P(H1)− a) that is negative ifa > P(H1). Moreover,r ′a(0) =
(1− a)(D′

1(0) + 1). This derivative is strictly positive ifA1(z) 6= 1. If A1(z) = 1, that is if H1 is not

selfoverlapping, thenra(z) = pzm1[1−am−z(1+a−am)+ pzm1] andr(m)
a (0) > 0 if a< 1

m1
. Hence,ra(z)

has a zero in]0,1[. ✷

We are now ready to state the main result of this section.

Theorem 3.1 Let H1 be a given word and a be some real number such that a6= P(H1). In a Bernoulli
and a Markov model, the random variable X1,n satisfies

P(X1,n = na) =
1

σa
√

2πn
e−nI(a)+δa(1+O(

1
n
)) , (8)

where

I(a) = aln

(
D1(za)

D1(za)+za−1

)

+ lnza , (9)

σ2
a = a(a−1)−a2za

(
2D′

1(za)

D1(za)
− (1−za)D′′

1(za)

D1(za)+(1−za)D′
1(za)

)

, (10)

δa = ln[
P(H)zm1

a

D1(za)+(1−za)D′
1(za)

] (11)

and za is the fundamental root of (Ea).

Remark: D1(z)
1−z is the generating function of a language [RS97a]. It satisfiesD1(0) = 1. Hence, it has

positive coefficients and cannot be 0 at a real value. It follows thatD1(za) 6= 0 and thatD1(za)+za−1 6= 0.
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Remark: It follows from (8) that− lnP(X1,n≥na)
n has a finite limit,I(a), whenn tends to∞. This limit is

the rate functionof the large deviation theory [DZ92]. Equation (8) provides two additional terms in the
asymptotic expansion and a correction to the result claimed in [RS97a].

Remark: Whena = P(H1), Equation (8) still provides the probability in the central domain. As a matter
of fact, the fundamental rootza is equal to 1. The rate function isI(a) = 0, as expected in the central
domain, andδa = 0. One can check that

σ2
a = P(H1)

(

2A1(1)−1+(1−2m)P(H1)+2P(H1)F(1)l(H1),f(H1) ·
1

πf(H1)

)

.

This is the variance previously computed in the Bernoulli case by various authors [Wat95] and in the
Markov case in [RS97a].

The next proposition provides a local expansion of the rate function.

Proposition 3.1 The rate function I satisfies, for anỹa in a neighbourhood of a,

I(ã) = I(a)+ I ′(a)(ã−a)+
1
2

I ′′(a)(ã−a)2 +O((ã−a)3) (12)

where

I ′(a) = ln

(
D1(za)+za−1

D1(za)

)

, (13)

I ′′(a) = − 1
σ2

a
. (14)

3.2 Technical results
Our proof of Theorem 3.1 is purely analytic. It follows from the definition ofT1(z,u) in (2) that

P(X1,n = na) = [zn][una]T1(z,u) .

Using the expression (4) this is

P(X1,n = na) = [zn]
P(H1)zm1

D1(z)2 M1(z)
na−1 .

Let us denoteP(H1)zm1

D1(z)2 M1(z)na−1 by fa(z). Whenna is an integer, this function is an analytic function.

Let us show that the radius of convergence is strictly greater than 1. The generating functionM1(z) is
the probability generating function of a language; hence, all its coefficients are positive and the radius of
convergence is at leastR= 1. It follows from the equationM1(z) = 1+ z−1

D1(z) thatM1(1) = 1: hence, the
radius of convergence ofM1 is strictly greater than 1. Now, this equation implies that the singularities of
M1 are the singularities ofD1(z) and the roots ofD1(z) = 0. Hence, these singularities and these roots are
necessarily greater than 1. Finally, all singularities offa(z) are greater than 1.

Let us observe that there exists a direct proof in the Bernoulli model. The seriesD1(z)
1−z = A1(z)+ 1

1−z ·
P(H)zm1 has only positive coefficients; hence, the root with smallest modulus is real positive. AsA1(z)
andP(H)zm1 have positive coefficients, a real positive root ofD1(z) is greater than 1.
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Cauchy formula for univariate series can be written as

P(X1,n = na) =
1

2iπ

I

1
zn+1

P(H1)zm1

D1(z)2 M1(z)
na−1dz ,

where the integration is done along any contour around 0 included in the convergence circle. We define
the functionha(z) of the complex variablez by the equation

ha(z) = alnM1(z)− lnz .

The integral above can be expressed in the formJg(a) = 1
2iπ

H

enha(z)g(z)dz whereg(z) is an analytic

function. Here,g(z) is set to beP(H1)zm1−1

D1(z)2
1

M1(z) = P(H1)zm1

zD1(z)(D1(z)+z−1) . We need to establish an asymptotic
expansion of this integral.

Theorem 3.2 Given an analytic function g, let Jg(a) be the integral

Jg(a) =
1

2iπ

I

enha(z)g(z)dz . (15)

If g is such that g(0) 6= 0, then the integral Jg(a) satisfies

Jg(a) =
e−nha(za)g(za)

2τa
√

πn

[

1+
1
n

(

−g′′(za)

g(za)

1
2τ2

a
+βa

g′(za)

g(za)

3
τa

+3γa

)

+O(
1
n2 )

]

, (16)

where

τa =
σa

aza
,

βa =
h(3)

a (za)

3!τ3
a

,

γa =
h(4)

a (za)

4!τ4
a

and za is the fundamental root of (7). If there exists an integer l such that G(z) = z−l g(z) is analytic at
z= 0, with G(0) 6= 0, then

Jg(a) = JG(a)zl
a ·
[

1− 1
2z2

aτ2
a
· l2

n
+

(
1

2z2
aτ2

a
+

3βa

τaza
− 1

τ2
aza

G′(za)

G(za)

)
l
n

+O(
1
n2 )

]

. (17)

Before dealing with the proof of Theorem 3.2, we observe thatha(za) is the functionI(a) defined in

(9) and that the dominating term isG(za)zl
a

τa
= g(za) · aza

σa
= eδa

σa
. This is Equation (8). The following terms

in the expansion will be necessary to deal with conditional events in Section 4

Proof of Theorem 3.2: We prove (16) by the saddle point method [Hen77]. We need to establish a
technical lemma.
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Lemma 3.2 Let a be a real number. The function ha(z) = alnM1(z)− lnz and all its derivatives are
rational functions of D1 and its derivatives. They satisfy the following equalities:

ha(za) = −I(a) ,

h′a(za) = 0 ,

h′′a(za) = τ2
a .

Moreover, there exists a neighbourhood of za, included in the convergence domain, and a positive integer
η such that

R (ha(z)−ha(za)) ≥ η . (18)

Proof: A differentiation of Equation (5) shows that the derivatives ofha(z) are rational functions ofD1

and its derivatives. The values at pointza follow from the Fundamental Equation (Ea). As h′′(za) > 0, the
second derivativeh′′ is strictly positive in some neighbourhood ofza; this establishes the lower bound on
the real part. ✷

Let us chose a suitable contour of integration for (15). A Taylor expansion ofha(z) andg(z) around
z= za yields:

ha(za +y) = ha(za)+
y2

2
h”a(za)+

y3

3!
h(3)

a (za)+
y4

4!
h(4)

a (za)+O(y5) ,

g(za +y) = g(za)+yg′(za)+y2 g′′(za)

2
+O(y3) .

With the change of variabley = x
τa
√

n, the integrand rewrites, whenny3 is small,

e−nI(a)g(za)

[

1+
g′(za)

g(za)
· x
τa
√

n
+

g′′(za)

g(za)

x2

2τ2
an

+βa
x3
√

n
+

βa

τa

g′(za)

g(za)

x4

n
+γ

x4

n
+O(

1

n3/2
)

]

.

We choose as a first part of the contour a vertical segment[z1,z2] = [za− i
nα ,za + i

nα ]. In order to keep
ny3 small whenny2 tends to∞, we choose1

3 < α < 1
2. In that case, each termxk provides a contribution

R +∞
−∞ e−

x2
2 xkdx= Fk

√
2π. These integrals satisfyF2p = Γ(2p)

2p−1Γ(p)
andF2p+1 = 0. Hence, the odd terms do

not contribute to the integral. This yields an asymptotic expansion ofP(X1,n = na) in 1
np+1/2 .

We now close our contour in order to get an exponentially negligible contribution. The bound (18)
implies that the contributions of the segments[0,z1] and[0,z2] are exponentially smaller thane−nI(a).

We need now establish (17). In order to use (16), we rewrite

[zn]enha(z)g(z) = [zn−l ]enha(z)G(z) = [zn−l ]e(n−l)hã(z)G(z)

whereã is defined by the equation
na= (n− l)ã .

It follows thatã = a+ al
n +a l2

n2 +O( 1
n2 ). We substitute(ã,n− l) to (a,n) in Equation (16) and compute a

Taylor expansion of all parameters : the fundamental rootzã, the rate functionI(ã), the variance termτa

and the constant termg(za).
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Fundamental root The functionψ(a,z) = ha(z) satisfies the functional equation

∂ψ
∂z

(a,za) = φ(a,za) = h′a(za) = 0

whereφ(a,z) = ∂ψ
∂z (a,z). It implicitely definesza as a functionz(a) of the variablea. Two differentaiations

with respect toa yield the derivatives ofz(a) at pointa. More precisely,

∂φ
∂a

+
∂φ
∂z

z′(a) = 0

From ∂φ
∂a(a,za) =

M′
1(za)

M1(za) = 1
aza

and ∂φ
∂z(a,za) = h′′(za) = τ2

a = σ2
a

a2z2
a
, we get

z′(a) = −aza

σ2
a

= − 1
τ2

aaza
.

Hence,z(ã) = za− 1
τ2
aza

· l
n +O( 1

n2 ).

Rate function We need here a local expansion of the rate functionI(a) around the pointa that is
interesting in its own.

ψ(ã,z(ã)) = ψ(a,za)+(ã−a)

(
∂ψ
∂a

+
∂ψ
∂z

·z′(a)

)

+
(ã−a)2

2

(
∂2ψ
∂a2 +2

∂2ψ
∂a∂z

·z′(a)+
∂ψ
∂z

·z′′(a)+
∂2ψ
∂z2 ·z′(a)2

)

+O((ã−a)3)

We have the following equalities:

∂ψ
∂z

(a,za) = h′a(za) = 0 ,

∂ψ
∂a

(a,z) = lnM1(z) ⇒ ∂2ψ
∂a2 (a,z) = 0 ,

∂2ψ
∂z2 (a,za) = h′′a(za) = τ2

a ,

∂2ψ
∂a∂z

(a,za) =
∂φ
∂a

(a,za) =
1

aza
.

The coefficient of(ã−a) reduces to∂ψ
∂a = lnM1(z). The coefficient of(ã−a)2 rewrites

z′(a)

2

(
2

aza
+ τ2

az′(a)

)

=
z′(a)

2

(
2

aza
− 1

aza

)

=
z′(a)

2aza
= − 1

2τ2
aa2z2

a
= − 1

2σ2
a

and (12) follows.
From the equation ˜a−a = a l

n +a l2

n2 , it follows that(n− l)(ã−a) = al +O( 1
n2 ) and(n− l)(ã−a)2 =

a2l2
n +O( 1

n2 ), and we get the rate function

(n− l)I(ã) = −nI(a)+ l(I(a)+alnM1(za))−
1

2τ2
az2

a

l2

n
+O(

1
n2 ) .
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As I(a)+alnM1(za) = lnza andG(za)zl
a = g(za), this term provides the correcting term

e
− 1

2τ2
az2a

l2
n +O( 1

n2 )
= 1− 1

2τ2
az2

a

l2

n
+O(

1
n2 ) .

Variance We now compute the contribution of
√

τ2
ã(n− l). We have:

(n− l)τ2
ã = nτ2

a

(

1− l
n

+2
τ′a
τa

(ã−a)+O(
1
n2 )

)

The equalityτ2
a = h′′a(z) = ∂2ψ

∂z2 (a,za) above implies that

2τaτ′a =
∂
∂a

∂2ψ
∂z2 (a,za) = h(3)(za)z

′(a)+
∂2φ
∂z∂a

= h(3)(za)z
′(a)+

∂
∂z

(
M′

1(z)
M1(z)

)

.

Hence,

2
τ′a
τ2

a
=

1
τ2

a

(

−3!τ3
aβa

τ2
aaza

+
1
a
(h′′a(z)−

1
z2 )

)

= − 3!βa

τaaza
+

1
a
(1− 1

τ2
az2

a
) .

Finally, (n− l)τ2
ã = nτ2

a(1− l
n( 1

τ2
az2

a
+ 3!βa

τaza
) and the contribution is

1

τã
√

n− l
=

1
τa
√

n

(

1+
l
n
(

1
2τ2

az2
a

+
3βa

τaza
)

)

.

Constant term We now compute the contribution ofG(zã). We have

G(zã) = G(za)

(

1+
G′(za)

G(za)
z′(a)(ã−a)+O(

1
n2 )

)

= G(za)

(

1− l
n

G′(za)

G(za)

1
zaτ2

a
+O(

1
n2 )

)

.

This is Equation (17).
✷

4 Conditional Events
We consider here theconditional countingproblem. The conditional expectation and variance can be
expressed as functions of the coefficients of the multivariate generating function of the language of texts

T . More precisely, it follows from the equationP(X2,n=k2|X1,n=k1) =
P(X1,n=k1 andX2,n=k2)

P(X1,n=k1) , that

E(X2,n|X1,n=k1) =
∑k2≥0k2P(X1,n=k1 andX2,n=k2)

P(X1,n=k1)
.

Definition (2) implies that

P(X1,n=k1) = [znuk1
1 ]T1(z,u1) = [znuk1

1 ]T(z,u1,1) .
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Moreover:

∑
k2

k2P(X1,n=k1 andX2,n=k2)) = ∑
k2

k2[z
nuk1

1 uk2
2 ]T(z,u1,u2)

= [znuk1
1 ]∑

k2

k2[u
k2
2 ]T(z,u1,u2) = [znuk1

1 ]
∂T
∂u2

(z,u1,1) .

It follows that

E(X2,n|X1,n=k1) =
[znuk1

1 ] ∂T
∂u2

(z,u1,1)

[znuk1
1 ]T(z,u1,1)

. (19)

Similarly, we can prove

Var(X2,n | X1,n = na) =
[znuk1

1 ]
(

∂2T(z,u1,u2)

∂u2
2

+ ∂T(z,u1,u2)
∂u2

)

[znuk1
1 ]T(z,u1)

−E((X2,n | X1,n = na)2 . (20)

Given two words, the softwareRegExpCountallows to compute and deriveT(z,u1,u2). The shift-of-
the-mean method allows to compute the linearity constant for the mean and the expectation in [Nic00].
This step is costly; notably, it must be repeated whenn varies.

Our closed formulae provide an efficient alternative. The general expression forT(z,u1,u2) given in
[Rég00] is a matricial expression that is not suitable for the computation of the partial derivatives that
occur in (19) and (20). In 4.1 below, we provide a new expression that is suitable for a partial derivative.

At point u2 = 1, the partial derivatives rewrite as
u

m1
1 ψ(z)

(1−u1M1(z))k whereψ is analytic inz in a larger domain

than 1
1−u1M1(z) . Hence, the methodolny of Section 3 applies.

4.1 Multivariate Generating Functions for Word Counting
Our enumeration method follows the scheme developed in [Rég00]. More details on this formalism can be
found in [Ŕeg00, Szp01]. In this paper, a set ofbasic languages, the initial, minimal andtail languages,
is defined and any counting problem is rewritten as a problem of text decomposition over these basic
languages. This is in the same vein as the general decomposition of combinatorial stuctures over basic
data structures presented in [FS96]. Such basic languages satisfy equations that depend on the counting
model. These equations translate into equations for corresponding generating functions, and multivariate
generating functions for the counting problem are rewritten over this set of basic generating functions.

We briefly present this formalism when two words H1 and H2 are counted. The initial languagesR̃i (for
i = 1 or 2) are defined as the languages of words ending withHi and containing no other occurrence of H1

or H2. The minimal languageMi, j (for i ∈ {1,2} and j ∈ {1,2}) contains the wordsw which end withH j

and such thatHiw contains exactly two occurrences of{H1,H2}: the one at the beginning and the one at
the end. The tail languagẽUi is the language of wordsw such thatHiw contains exactly one occurrence
of Hi and no other{H1,H2}-occurrence. For example, let us assume that H1 = ATT and H2 = TAT. The
textTTATTATATATT can be decomposed as follows:

T T A T T
︸ ︷︷ ︸

∈R1

A T A TA T T
︸ ︷︷ ︸

∈M1

T T
︸︷︷︸

∈U1

and T T A T
︸ ︷︷ ︸

∈R̃2

T
︸︷︷︸

∈M2,1

A T
︸︷︷︸

∈M1,2

A T
︸︷︷︸

∈M2,2

A T
︸︷︷︸

∈M2,2

T
︸︷︷︸

∈M2,1

T T
︸︷︷︸

∈Ũ1
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Among the many decompositions ofT according to these languages, the following new one is of
particular interest for conditional counting.

Theorem 4.1 LetT+ ⊂ T be the set of words on the alphabetS which contain at least one occurrence of
H1 or at least one occurrence ofH2. It satisfies the language equation

T+ = R̃2M ∗
2,2Ũ2 +R1M ∗

1 U1 (21)

that translates into the functional equation on the generating functions

T(z,u1,u2) =
u2R̃2(z)Ũ2(z)
1−u2M2,2(z)

+
u1R1(z,u2)U1(z,u2)

1−u1M1(z,u2)
. (22)

Proof: The first term of the right member is the set of words ofT+ which do not contain any occurrence
of H1 ; such a text can be decomposed according to H2 occurrences, using basic languagesR̃2,M2,2 ,Ũ2.
The second term is the set of words ofT+ that contain at least one occurrence of H1; such a text can be
decomposed according to H1 occurrences, using basic languagesR1,M1,U1. ✷

The proposition below establishes a decomposition of the basic languages for a single pattern onto the
basic languages for several words. The bivariate generating functions that count H2-occurrences in these
basic languages follow.

Proposition 4.1 Given a reduced couple of words(H1,H2), the basic languagessatisfy the following
equations:

R1 = R̃1 + R̃2M ∗
2,2M2,1

U1 = Ũ1 +M1,2M ∗
2,2Ũ2

M1 = M1,1 +M1,2M ∗
2,2M2,1 .

The multivariate generating functions that countH2-occurrences in these languages are:

R1(z,u2) = R̃1(z)+
u2R̃2(z)M2,1(z)
1−u2M2,2(z)

, (23)

U1(z,u2) = Ũ1(z)+
u2M1,2(z)Ũ2(z)
1−u2M2,2(z)

, (24)

M1(z) = M1,1(z)+
u2M1,2(z)M2,1(z)

1−u2M2,2(z)
. (25)

Proof: The proof of the first equation relies on a very simple observation: a wordw in R1 is not inR̃1 iff
it containsk occurrences of H2 beforeH1, with k ≥ 1. Hence, such a word rewrites in a unique manner:
w = r2w1...wk−1m2,1 wherer2 ∈ R̃2, wi ∈ M2,2 andm2,1 ∈ M2,1. A similar reasoning leads to the second
and third equations. ✷

4.2 Partial derivatives
The proof of our main theorems, Theorem 4.2 and Theorem 4.3, relies on a suitable computation of the
partial derivatives of the bivariate generating function. Notably,∂T

∂u2
(z,u1,1) yields the generating function

of conditional expectations.
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Proposition 4.2 Let(H1,H2) be a couple of words. The bivariate generating function of theH1-conditional
expectation ofH2-occurrences is, in Bernoulli and Markov models:

∂T
∂u2

(z,u1,1) = φ0(z)+
u1φ1(z)

(1−u1M1(z,1))
+

u2
1φ2(z)

(1−u1M1(z,1))2 (26)

where

φ0(z) =
(−P(H1)D1,2(z)zm1 +P(H2)D1(z)zm2)(−D2,1(z)+D1(z))

(1−z)2D1(z)2 , (27)

φ1(z) =
−2P(H1)D2,1(z)D1,2(z)zm1 +P(H2)D1(z)D2,1(z)zm2 +P(H1)D1,2(z)D1(z)zm1

(1−z)D1(z)3 , (28)

φ2(z) =
P(H1)zm1D1,2(z)D2,1(z)

D1(z)4 . (29)

Proof: Deriving with respect tou2 yields:

∂T
∂u2

(z,u1,u2) =
R̃2(z)Ũ2(z)

(1−u2M2,2(z))2 +
u1

1−u1M1(z,u2)

∂R1(z,u2)U1(z,u2)

∂u2

+
u2

1

(1−u1M1(z,u2))2 ×R1(z,u2)U1(z,u2)
∂M1(z,u2)

∂u2

Equations (23)-(25) allow for an easy derivation of (30). The partial derivatives of probability generat-
ing functions of languagesR1,U1 andM1 satisfy the following equations:

∂R1

∂u2
(z,u2) =

R̃2(z)M2,1(z)
(1−u2M2,2(z))2 ,

∂U1

∂u2
(z,u2) =

M1,2(z)Ũ2(z)
(1−u2M2,2(z))2 ,

∂M1

∂u2
(z,u2) =

M1,2(z)M2,1(z)
(1−u2M2,2(z))2 .

Hence,

∂T
∂u2

(z,u1,u2) =
R̃2(z)Ũ2(z)

(1−u2M2,2(z))2 +
u1

1−u1M1(z,u2)

R̃2(z)M2,1(z)U1(z,u2)+R1(z,u2)M1,2(z)Ũ2(z)
(1−u2M2,2(z))2

+
u2

1

(1−u1M1(z,u2))2

R1(z,u2)U1(z,u2)M1,2(z)M2,1(z)
(1−u2M2,2(z))2 (30)

To complete the proof, we rely on the results proved in [RS97b, Rég00], where the monovariate gener-
ating functions of the basic languages are expressed in terms of the coefficients ofD(z). More precisely:

Proposition 4.3 The matrixD(z) is regular when|z|< 1. The generating functions of the basic languages
are defined by the following equations:

(R̃1(z), R̃2(z)) = (P(H1)z
m1,P(H2)z

m2)D(z)−1 , (31)

I− IM(z) = (1−z)D(z)−1 , (32)
[

Ũ1(z)
Ũ2(z)

]

=
1

1−z
D(z)−1

[
1
1

]

. (33)
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The classical inversion formulae in dimension 2 lead to the equation

D(z)−1 =
1

determinant(D(z))

[
D2,2(z) −D1,2(z)
−D2,1(z) D1(z)

]

.

Settingu2 = 1 in (30) and substituting the expressions given in (31-33) yield (26). ✷

4.3 Conditional expectation
Our main theorem is Theorem 4.2 below. We introduce a few notations.

Notation: Let us denote

g(z) =
P(H1)zm1

zD1(z)(D1(z)+z−1)
, (34)

ḡ(z) =
P(H1)zm1

z
· D1,2(z)D2,1(z)
D1(z)2(D1(z)+z−1)2 . (35)

Let us denotel andl̄ the orders atz= 0 of g andḡ, respectively, and let

θ̄(z) =
ḡ(z)
g(z)

=
D1,2(z)D2,1(z)

D1(z)(D1(z)+z−1)
, (36)

Θ(z) = zl−l̄ θ̄(z) (37)

Theorem 4.2 Let T be the language of all possible words on an alphabetS . Assume thatT is randomly
generated by a Bernoulli or a Markov process. Given a reduced couple of words(H1,H2), we denote X1,n

and X2,n the two random variables that count the number of occurrences ofH1 andH2, respectively. The

conditional expectation of X2,n, knowing that
X1,n

n = a is

E(X2,n | X1,n = na) ∼ nµ(a)+λ(a) (38)

where µ andλ are functions of the autocorrelation polynomials at the point za that is the solution of
Equation (7). With the notations of (8) and (34)-(37), these functions are

µ(a) = aθ̄(za) , (39)

λ(a) = −θ̄(za)+3a
βa

τa
Θ′(za)z

l̄−l
a −a

1
2τ2

a

(

Θ′′(za)+2Θ′(za) ·
∂ lnz−l g(z)

∂z
(za)

)

zl̄−l
a

+
D1(za)

2φ1(za)

P(H1)z
m1
a

+µ(a)
1

2z2
aτ2

a
(l̄2− l2)

+ µ(a)(l̄ − l)

(
1

2τ2
az2

a
+

3βa

τaza

)

− µ(a)

zaτ2
a

(

l̄
∂ ln ḡ(z)

∂z
− l

∂ lng(z)
∂z

)

(za) , (40)

with

βa =
1
3!

· 1
τ3

a
· ∂3

∂z3

(

aln
D1(z)+z−1

D1(z)
− lnz

)

(za) .
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Remark: In the central region, the substitutionsza = 1 anda = P(H1) in (39) steadily give thatµ(a) =
P(H2).

Proof: We are ready to compute (19). To get thelinear term, we observe that

[znuk1
1 ]

u2
1

(1−u1M1(z,1))2 = [zn](k1−1)M1(z,1)k1−2 .

We observe thatM1(z,1) is equal toM1(z) in the previous section and thatD1,1(z) = D1(z). With k1 = na,
the ratio (19) to be computed becomes

(na−1)
[zn]φ2(z)M1(z)na−2

P(X1,n = na)
= (na−1)

[zn]φ2(z)M1(z)na−2

Jg(a)
.

In this ratio, the computation of the numerator contribution is similar to the computation of (8). The
integrand rewrites

Jḡ(a) =
1

2iπ

I

enha(z)ḡ(z)dz ,

whereḡ(z) = φ2(z)
zM1(z)2 = P(H1)zm1

z · D1,2(z)D2,1(z)
D1(z)2(D1(z)+z−1)2 and the ratio (19) becomes(na−1)

Jḡ(a)
Jg(a) . Using (17),

this is

(na−1)
JḠ(a)

JG(a)
zl̄−l
a

[

1− 1
2z2

aτ2
a
· l̄2− l2

n
+

(
1

2z2
aτ2

a
+

3βa

τaza

)
l̄ − l

n
− 1

τ2
aza

(
Ḡ′(za)

Ḡ(za)

l̄
n
− G′(za)

G(za)

l
n

)

+O(
1
n2 )

]

.

We use (16) to computeJḠ(a)
JG(a)z

l̄−l
a . The exponential terms simplify and theγ-terms cancel. The ratio (19)

becomes

(na−1)
Ḡ(za)

G(za)
zl̄−l
a ×

[

1+
1
n
· 3βa

τa

(
Ḡ′(za)

Ḡ(za)
− G′(za)

G(za)

)

− 1
n
· 1
2τ2

a

(
Ḡ′′(za)

Ḡ(za)
− G′′(za)

G(za)

)

+O(
1
n2 )

]

×

[

1− 1
2z2

aτ2
a
· l̄2− l2

n
+

(
1

2z2
aτ2

a
+

3βa

τaza

)
l̄ − l

n

− 1
τ2

aza

(
Ḡ′(za)

Ḡ(za)

l̄
n
− G′(za)

G(za)

l
n

)

+O(
1
n2 )

]

.

With the notations above, we haveḠ(z)
G(z)z

l̄−l = ḡ(z)
g(z) = θ̄(z). It follows that thelinear termis

aθ̄(za) = µ(a) .

Let us compute now theconstant term. First,− ḡ(za)
g(za) yields a contribution−θ̄(za). Second, we observe

that f ′(z)
f (z) = ∂ ln f (z)

∂z . This yields a contributiona · θ̄(za) · 3βa
τa

· ∂ lnΘ(z)
∂z (za) = a3βa

τa
Θ′(za)zl̄−l

a . Third, the
general equation

f ′′(z)
f (z)

=
∂2 ln f (z)

∂z2 +

(
∂ ln f (z)

∂z

)2
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implies that

Ḡ′′(z)

Ḡ(z)
− G′′(z)

G(z)
=

∂2 lnΘ(z)
∂z2 +

(
Ḡ′(z)

Ḡ(z)
− G′(z)

G(z)

)(
Ḡ′(z)

Ḡ(z)
+

G′(z)
G(z)

)

=
Θ′′(za)

Θ(za)
− Θ′(za)

2

Θ(za)2 +
Θ′(za)

Θ(za)
·
(

Θ′(za)

Θ(za)
+2

G′(z)
G(z)

)

=
1

Θ(za)

(

Θ′′(za)+2Θ′(za)
∂ lnG(z)

∂z

)

which contributes

−azl̄−l
a

2τ2
a

(

Θ′′(za)+2Θ′(za)
∂ lnz−l g(z)

∂z
(za)

)

.

The next contribution isµ(a)(l̄2− l2)( −1
2z2

aτ2
a
). The last term in the product contributes

µ(a)(l̄ − l)

(
1

2τ2
az2

a
+

3βa

τaza

)

− µ(a)

zaτ2
a

(

l̄
∂ lnz−l̄ ḡ(z)

∂z
− l

∂ lnz−l g(z)
∂z

)

(za) .

Furthermore, we have

−µ(a)

zaτ2
a

(

l̄
∂ lnz−l̄ ḡ(z)

∂z
− l

∂ lnz−l g(z)
∂z

)

(za) = −µ(a)

zaτ2
a

(

l̄
∂ ln ḡ(z)

∂z
− l

∂ lng(z)
∂z

)

(za)+
µ(a)

z2
aτ2

a
(l̄2− l2)

Finally, the last contribution to the constant term comes from

[znuk1
1 ]u1φ1(z)(1−u1M1(z))−1

P(X1,n = na)
=

[zn]φ1(z)M1(z)na−1

P(X1,n = na)
.

This coefficient is
φ1(za)

zaM1(za)
· 1
g(za)

=
φ1(za)D1(za)

2

P(H1)z
m1
a

.

✷

4.4 Conditional variance
We prove here that the variance is a linear function ofn, except for a few degenerate cases. We provide
the linearity constant.

Theorem 4.3 With the same conditions as Theorem 4.2, theconditional varianceof X2,n, when X1,n is
known and equal to na, is a linear function of n. More precisely,

Var(X2,n | X1,n = na) ∼ nν(a)

where

ν(a) = µ(a)

[

1+2
M2,2(za)

1−M2,2(za)
− θ̄(za)−

µ(a)

τ2
a

(
∂ ln θ̄(za)

∂z

)2
]

. (41)
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Remark: It follows from (41) that the expectationnµ(a) is a tight approximation of the variance, when

M2,2(z) is small. This is the usual case, but the contribution of 2
M2,2(za)

1−M2,2(za) may be significant, for instance

when H2 = x∗, wherex is some character of the alphabet.
The linearity constant may also be 0 in some degenerate cases. For example, with an alphabet of size 2,

the choices of the two wordsABandBA leads toM2,2(z) = 0 andθ̄(z) = 1. The variance is 0. As a matter
of fact, the difference between the number of occurrences ofAB and the number of occurrences ofBA is
at most 1.

We now use the formula (20). We only need to compute the second partial derivative ofT. We pro-
ceed with a second differentiation of (30), using again the partial derivatives∂R1

∂u2
(z,u2),

∂U1
∂u2

(z,u2) and
∂M1
∂u2

(z,u2). This yields notably∂2M1
∂u2

2
=

M1,2(z)M2,1(z)M2,2(z)
(1−u2M2,2(z))3 and, finally, we get Proposition 4.4 below.

Proposition 4.4 With the same hypotheses as Proposition 4.2, we have

∂2T

∂u2
2

(z,u1,1) = ψ0(z)+
u1ψ1(z)

(1−u1M1(z,1))
+

u2
1ψ2(z)

(1−u1M1(z,1))2 +
u3

1ψ3(z)

(1−u1M1(z,1))3 (42)

where

ψ0(z) = 2
φ0(z)M2,2(z)
1−M2,2(z)

,

ψ1(z) = 2φ0(z)φ2(z) ·
D1(z)2

P(H1)zm1
,

ψ2(z) = 2φ2(z)[φ1(z)
D1(z)2

P(H1)zm1
+

M2,2(z)
1−M2,2(z)

] ,

ψ3(z) = 2φ2(z)
2 · D1(z)2

P(H1)zm1
.

Proof of Theorem 4.3: As a consequence of (42), we get

[uk1
1 ]

∂2T(z,u1,u2)

∂u2
2

=

[
ψ3(z)

M1(z)3 · (k1−1)(k1−2)

2
+(k1−1)

ψ2(z)
M1(z)2 +

ψ1(z)
M1(z)

]

M1(z)
k1 .

Let us denote:

g̃ =
ψ3(z)

z·M1(z)3 , f̃ =
ψ2(z)

z·M1(z)2 .

It follows that

[znuk1
1 ]

∂2T(z,u1,u2)

∂u2
2

=
(na)2−3na

2
Jg̃(a)+naJf̃ (za)+O(e−nI(a)) .

Hence,

Var(X2,n | X1,n = na) = n2 a2

2
Jg̃(a)

Jg(a)
+n

(

−3
2

a· g̃(za)

g(za)
+a

f̃ (za)

g(za)
+µ(a)

)

− (nµ(a)+λ(a))2 +O(1) .
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To achieve the derivation, we need to establish relationships between ˜g(z),g(z) andḡ(z). We check that

g̃(z)
g(z)

= 2

(
ḡ(z)
g(z)

)2

= 2θ̄(z)2 . (43)

It follows that the quadratic terms12
g̃(za)
g(za) and

(
ḡ(za)
g(za)

)2
cancel. Consequently, thevariance is a linear

function of n. In a few degenerate cases, it is a constant function. Let us compute now the linearity
coefficient. First of all, the sum−3

2a · g̃(za)
g(za) + µ(a) contributes byµ(a)(1− 3θ̄(za)). The term−θ̄(za)

in λ(a) yields the contribution 2µ(a)θ̄(za). Then, we consider in turn the terms in (16) and (17) that

contribute ton2 a2

2
Jg̃(a)
Jg(a) + na f̃ (za)

g(za) and−2nµ(a)λ(a). The first term isa f̃ (za)
g(za) − 2µ(a) · D1(za)2φ1(za)

P(H1)z
m1
a

. As

a ḡ(za)
g(za) = µ(a) and f̃ (z)

ḡ(z) = ψ2(z)
φ2(z) , this difference simplifies into

µ(a)

(
ψ2(z)
φ2(z)

−2
D1(za)

2φ1(za)

P(H1)z
m1
a

)

= 2µ(a)
M2,2(za)

1−M2,2(za)
.

We now observe that other contributions to∂2T
∂u2

2
and E(X2,n)

2 have a common multiplicative factor:

a2

2
g̃(za)
g(za) = a2( ḡ(za)

g(za) )
2 = µ(a)2 or−2µ(a) ·a ḡ(za)

g(za) = −2µ(a)2.

The next terms are the( 1
2τ2

az2
a
+ 3βa

τaza
) terms; the contributions areµ(a)2(l̃ − l) and−2µ(a)2(l̄ − l). Equa-

tion (43) implies that̃l − l = 2(l̄ − l). Hence, these two contributions cancel. Similarly, the(l̃2− l2) and
(l̄2− l2)-terms contribute

n·µ(a)2 · (−1)

2τ2
az2

a
[(l̃2− l2)−2(l̄2− l2)] .

As l̃ − l = 2(l̄ − l), we havel̃ − l̄ = l̄ − l . Hence,(l̃2− l2)−2(l̄2− l2) rewrites 2(l̄ − l)2 and this yields

−µ(a)2

τ2
az2

a
(l̄ − l)2.

The two termsµ(a)2 · 3βa
τa

·
∂ ln G̃(za)

G(za)

∂z and 2µ(a)2 · 3βa
τa

·
∂ ln Ḡ(za)

G(za)

∂z contribute

3βa

τa
·µ(a)2 · [

∂ ln G̃(za)
G(za)

∂z
−2

∂ ln Ḡ(za)
G(za)

∂z
] .

Using again (43), we get

∂ ln G̃
G(z)

∂z
= 2

∂ ln Ḡ
G(z)

∂z
(44)

and these terms cancel. Now, we have

G̃′′(z)

G̃(z)
− G′′(z)

G(z)
=

∂2 ln G̃(z)
G(z)

∂z2 +
∂ ln G̃(z)

G(z)

∂z
· ∂ ln(G̃(z)G(z))

∂z
.
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Deriving (44), we get
∂2 ln G̃

G(z)

∂z2 = 2
∂2 ln Ḡ

G(z)

∂z2 . Hence, the two terms

µ(a)2




∂2 ln G̃(z)

G(z)

∂z2 +
∂ ln G̃(z)

G(z)

∂z
· ∂ ln(G̃(z)G(z))

∂z



(za)

and

−2µ(a)2




∂2 ln Ḡ(z)

G(z)

∂z2 +
∂ ln Ḡ(z)

G(z)

∂z
· ∂ ln(Ḡ(z)G(z))

∂z



(za)

contribute

µ(a)2 ·




∂ ln G̃(z)

G(z)

∂z
· ∂ ln(G̃(z)G(z))

∂z



(za)−2




∂ ln Ḡ(z)

G(z)

∂z
· ∂ ln(Ḡ(z)G(z))

∂z



(za) .

We can factorize 2
∂ ln G̃(z)

G(z)
∂z and rewrite :

∂ ln(G̃(z)G(z))
∂z

− ∂ ln(Ḡ(z)G(z))
∂z

=
∂ ln( G̃(z)

G )

∂z
− ∂ ln( Ḡ(z)

G )

∂z
=

∂ ln( Ḡ(z)
G(z) )

∂z
.

Finally, the contribution of these two terms is

2µ(a)2(
∂ ln Ḡ(z)

G(z)

∂z
)(za)

2 · (−1)

2τ2
a

= −µ(a)2

τ2
a

· (∂ lnΘ
∂z

(za))
2 .

The last contribution is

µ(a)2 · −1
τ2

aza

[(

l̃
∂ lnG̃(z)

∂z
− l

∂ lnG(z)
∂z

)

(za)−2

(

l̄
∂ lnḠ(z)

∂z
− l

∂ lnG(z)
∂z

)

(za)

]

.

The third factor can be expressed asl̃
∂ ln(

G̃(z)
G )

∂z −2l̄
∂ ln(

Ḡ(z)
G )

∂z = 2(l̃ − l̄)
∂ ln(

Ḡ(z)
G )

∂z = 2(l̄ − l)
∂ ln(

Ḡ(z)
G )

∂z . Now, the
overall contribution of

−µ(a)2

τ2
a

[

(l̄ − l)2

z2
a

+

(
∂ lnΘ

∂z
(za)

)2

+2(l̄ − l)
1
za

∂ ln( Ḡ(z)
G )

∂z
(za)

]

is −µ(a)2

τ2
a

(
∂ ln θ̄

∂z (za)
)2

.
✷
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5 Conclusion
Our formulae apply for both Bernoulli and Markov models for random texts generation and provide sharp
large deviation estimates. This approach needs much less computations than exact methods, in the domain
where such methods are computable. Experimental evidence is presented in [DRV01], where our results
are compared to others ([BFW+00] andRSA-tools). Other applications, and a comparison with other
methods [RS98, Nue01, RS01], are presented in [Rég03] and will be extended in a forthcoming paper.
Maple procedures that implement a part of our results are available on request. An extension to under-
represented words is possible, and related results are presented in [VM03].

A slight modification allows for the extension of these formulae to other counting models, such as the
renewal model[Wat95, TA97]. A natural –and useful– generalisation of this work would be to give similar
formulae for sets of motifs. In particular, computing expectation and variance conditioned by several
overrepresented motifs would be useful to detect new significant information in biolnical sequences.
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