N

N
N

HAL

open science

Rare Events and Conditional Events on Random Strings

Mireille Régnier, Alain Denise

» To cite this version:

Mireille Régnier, Alain Denise. Rare Events and Conditional Events on Random Strings.

crete Mathematics and Theoretical Computer Science, 2004, Vol. 6 no. 2 (2), pp.191-214.

10.46298 /dmtcs.310 . hal-00959004

HAL Id: hal-00959004
https://inria.hal.science/hal-00959004
Submitted on 13 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/hal-00959004
https://hal.archives-ouvertes.fr

Discrete Mathematics and Theoretical Computer Scigh@904, 191-214

Rare Events and Conditional Events on
Random Strings

Mireille Régniet and Alain Denisé [

lINRIA,78153 Le Chesnay, France
2| RI-Universié Paris-Sud, UMR CNRS 8623, 91405 Orsay, France

received Feb 7, 20Q3evised Dec 18, 20Q&ccepted Feb 11, 2004

Some strings -the texts- are assumed to be randomly generated, according to a probability model that is either a
Bernoulli model or a Markov model. A rare event is the over or under-representation of a word or a set of words.
The aim of this paper is twofold. First, a single word is given. We study the tail distribution of the number of its
occurrences. Sharp large deviation estimates are derived. Second, we assume that a given word is overrepresented.
The conditional distribution of a second word is studied; formulae for the expectation and the variance are derived. In
both cases, the formulae are precise and can be computed efficiently. These results have applications in computational
biology, where a genome is viewed as a text.

Keywords: large deviations, combinatorics, generating fumctions, words, genome

1 Introduction

In this paper, we study the distribution of the number of occurrences of a word or a set of words in
random texts. So far, the first moments, e.g. the mean and the variance, have been extensively studied by
various authors under different probability models and different counting schemes [\Watf)|FSzp01].
Moreover, it is well known that the random variable that counts the number of occurrences converges, in
law, to the normal law[[BK93, PRAT95, RS97a, NSF99, FGSVO01] when thensifdhe text grows to
infinity. Nevertheless, very few results are known out of the convergence domain, also called the central
domain. This paper aims at filling this gap, as rare events occur out of the convergence domain.

First, we study theail distribution. We consider a single given wordHin [RS97al NSF99], a large
deviation principle is established; in [RS97a] the rate function is implicitely defined, but left unsolved. In
[RS98], the authorapproximatethe exact distribution by the so-called compound Poisson distribution,
and compute the tail distribution of this approximate distribution. We provide a precise expansion of the
exact probability out of the convergence domain. More precisely, we derive a computable formula for
the rate function, and two more terms in the asymptotic expansion. This accuracy is made possible by

TThis research was partially supported by IST Program of the EU under contract number 99-14186 (ALCOM-FT) and French
Bioinformatics and IMPG Programs.
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the combinatorial structure of the problem. Second, we rely on these results to addressditienal
counting problem. The overrepresentation (or the under-representation) of a warbdifies the dis-
tribution of the number of occurrences of the other words. In this paper, we study the expectation and
the variance of the number of occurrences of a wogdwhen an other word, H is exceptional, that is
either overrepresented or under-represented. Our results on the tail distributigralbidwito show that
the conditional expectation and variance of &te linear functions of the sizeof the text. We derive
explicit formulae for the linearity constants.
The complexity to compute thail distributionor theconditional countingnoments is low. As a matter
of fact, it turns out that the problem reduces to the solution of a polynomial equation the degree of which
is equal to the length of the overrepresented word. The approach is valid for various counting models.
These results have applications in computational biology, where a genome is viewed as a text. Available
data on the genome(s) are increasing continuously. To extract relevant information from this huge amount
of data, itis necessary to provide efficient tools‘farsilico” prediction of potentially interesting regions.
The statistical methods, now widely uséd [BJVU98, GKMO00, BUS00, LELO1, EP02, MMMLO2] rely on
a simple basic assumption: an exceptional wael, a word which occurs significantly more (or less)
in real sequences than in random ones, may denote a biological functionality. The conditional counting
problem is adressed when one wants to detect a weak biological signal, the wdriddén by a stronger
signal, the word H [BFW'0Q,[DRV01].
Sectior| 2 is devoted to the introduction of some preliminary notions and results. The tail distribution
of a single word is studied in sectiph 3. Conditional events are addressed in $¢ction 4.

2 Preliminary notions
2.1 Probability model

Our assumption is that the languages are generated on some alghabsizeV by an ergodic and
stationary source. The models we handle are eitheBémeoulli modelbr theMarkov model

In the Markov model, a tex¥ is a realization of atationaryMarkov process of orddé€ where the prob-
ability of the next symbol occurrence depends orihgrevious symbols. Given tw-uples(ay, - - - ,0k)
and(By,--- ,Bk) from $X, the probability that #-ocurrence ends at positibrwhen ara-occurrence ends
at positionl — 1, does not depend on the positioim the text. E.g., we denote

Pap = P(<T|*K+lv'” 7T|) = B|(T|7K "'Tlfl) = G)

These probabilities define &< x VK matrix P = {pap} that is called theransition matrix As the
probability py g is 0 if (a2, -+ ,ak) # (B1,- -, Bk-1), the transition matri® is sparse wheK > 1. Vector
= (Tm,...,Tyk ) denotes the stationary distribution satisfyimi®= 11, andr1 is the stationary matrix that
consists ofvK identical rows equal tat Finally, Z is the fundamental matrix Z = (I— (P —))~!
wherel is the identity matrix.

Definition 2.1 Given a word z of lengtlz| greater than or equal to K, we denotéwz) the conditional
probabilitythat a w occurrence starts at a given position | in the text, knowing that a z occurrence starts
at position |- |z + 1.
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Given a word w of sizew|, |w| > K, we denote fw) and I(w) the w-prefix and the w-suffix of length K.
Foriin {1,---,|w] — K +1}, we denote Vi] the i-th factor of length K. That is

WIi| = Wi+ Wiyk -1
We denote Rv) the stationary probabilitghat the word w occurs in a random text. That is

WK
P(w) = 11 Puit wii+1
(W) iI:l Wil wi+1]

It will appear that all counting results depend on the Markovian process through submatrices of the
matrix F(z) defined below.

Definition 2.2 Given a Markovian model of order K, 18(2) be the \K x VK matrix
F(z) = (P-M)(I—(P-MN)z)~* . 1)
It is worth noticing thaff(z) can be reexpressed as a power serig in

In the Bernoulli model, one assumes that the text is randomly generated by a memoryless source. Each
letter s of the alphabet has a given probabilipy to be generated at any step. Generally, phare not
equal and the model is said to beased When allps are equal, the model is said to baiform The
Bernoulli model can be viewed as a Markovian model of okler 0.

2.2 The correlation polynomials and matrices

Finding a word in a random text is, in a certain sense, correlated to the previous occurrences of the same
word or other words. For example, the probability to fingH ATT, knowing that one has just found

H, = TAT, is - intuitively - rather good since @ just after H is enough to give Kl The correlation
polynomials and the correlation matrices give a way to formalize this intuitive observation. At first, let us
define the overlapping set and the correlation[set [G081] of two words.

Definition 2.3 Theoverlapping sebf two wordsH; andH; is the set of suffixes ¢f; which are prefixes
of Hj. Thecorrelation sets the set oH;-suffixes in the associatet|-factorizations. It is denoted by, ;.
WhenH; = H;, thecorrelation sets called theautocorrelation seif H;.

For example, the overlapping set of B ATT and H = TAT is {T}. The associated factorization obH

is T -AT. The correlation set is1; » = {AT}. The overlapping set of Hwith itself is {TAT,T}. The
associated factorizations aFé\T - € andT - AT, whereg is the empty string. The autocorrelation set of H

is {&,AT}. As any string belongs to its overlapping set, the empty string belongs to any autocorrelation
set.

Definition 2.4 In the Markov model, theorrelation polynomiabf two wordsH; and H; is defined as
follows:
A= PWlI(H))Z" .

WE T
In the Bernoulli model, theorrelation polynomiais
AR =3 PwWZ" .

WEA j
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WhenH; = H;, this polynomial is called thautocorrelation polynomiaif H;.
Given two word$H1 andH,, the matrix

Definition 2.5 Given two ordered set# = {H1,--- ,H{} and 75 = {H3,-- ,H}} , let G 4, (2) be the
g x r matrix

A11(2) A12(z
R et

=

is called thecorrelation matrix

(Gog6@) =F @y 07—~

2.3 Word counting

There are several ways to count word occurrences, that depend on the possible applicationanat H
H, be two words on the same alphabet. In tverlapping counting modéWat95], any occurrence of
each word is taken into account. Assume, for example, that HTT,H, = TAT and that the text is
TTATTATATATT. This text contains 2 occurrences of Bind 4 overlapping occurrences of Bt positions
2,5,7 and 9. In other models, such as tlemewal mode[TA97], some overlapping occurrences are
not counted. Although our approach is valid for different counting models, we restrict here to the most
commonly used, e.g. theverlapping modelWat98g].

When several words are searched simultaneously, we need some additional conditions on this set of
words,H. Itis generally assumed that the $étis reduced

Definition 2.6 [BK93] A set of words iseducedf no word in this set is a proper factor of another word.

The two words H and H do not play the same role in the conditional counting problem. We can
partially relax the reduction condition.

Definition 2.7 A couple of wordgH1,H>) is reduced iff the sefH,H>} is reduced o, is a proper
prefix ofHa.

Remark that, in the case where the set of words is given by a regular expression, this regular expression
must be unambiguous. A discussion on ambiguity in counting problems and algorithmic issues can be
found in [KM97].

2.4 Multivariate Probability Generating Functions

Our basic tools are theultivariate probability generating functionsLet £ be some language that is
randomly generated according to one of the models described above. For anymtegér be the set
of words of sizen that belong to£. Given two words H and H, we denoteX; , with i € {1,2}, the
random variable which counts the occurrence$ipin a text from this set’,; we denoteP(X; n = k)
the probability that Hoccursk times. Theprobability generating functioof the random variabl; ,, is
denoted? . We have

Pa(u) = 3 P(Xn =k .

K>0
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Definition 2.8 Given a language’, the multivariate generating function that couis and H, occur-
rences in the texts that belong to this languages

L(zu,up) = zoz“ Z P(X1n=k1 andXzynzkz)u';lu';2 )
n> k1+ko>0

The multivariate generating function that coukts-occurrences (only) is

Ll(Z7 Ul) = 2 z Z P(XLn:kl)Ulil = Z ZnPLn(Ul) . (2)

n>0 k;>0 n>0

Remark: These multivariate generating functions satisfy the equation
Li(zu1) =L(zu1,1) .

Moreover,L;1(z,1) = L1(z 1,1) is theordinary generating functioof the language.

One important language is the set of all possible words on the alplfabenoted below byr". Lan-
guage7 is also named the language of texts. A general expression for its multivariate generating function
T(zup,up) is derived in[[Rrg00]. For a single word Hof sixe my, it depends on Hthrough the entire
series of the variabledefined as follows:

D1(2) = (1- 2Au(2) + P(HL)Z™ + F(@)y iy ) - nf(lH) . 3)

In the Bernoulli model, this serid3;(z) is a polynomial.

Proposition 2.1 [RS974&] The multivariate generating function that counts the occurrences of a single
word Hq of sixe m, in a Bernoulli or a Markov model, satisfies the equation

ug P(H1)z™

T(zu) =T(zuy,1) = 7— uMs(2) Da(2)? *

where
Dl(Z) +z-1

M1(Z) = D]_(Z)

®)

As a consequence, our counting results only depend on this $&rigs Similarly, for two words
counts, all the results depend on &hd H through the matrixD(z) defined below.

Definition 2.9 Given a reduced couple of wortlls andHy of size m and m, letD(z) be the2 x 2 matrix

D@) = (1-2A@) + | pii)am piit)am |+ Civ o) @ ©)

We denote, for,jj in {1,2},
Di.j(2) = D(2);
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3 Significance of an Exceptional Word

In this section, we study th&il distribution of the number of occurrences of a single worg iH a
random text7. In [RS974], a large deviation principle is established by the Gartner-Ellis Theorem. We
derive below an explicit formula for the rate function and a precise expansion of the probabilities in the
large deviation domain. These results should be comparéd to [Hwa98] although the validity domains in
[Hwa98] are closer to the central region.

3.1 Sharp large deviations estimates

Definition 3.1 The fundamental equation is the equatiog)(E
D1(2)* - (1+(a—1)2)D1(2) —az1-2)Dy(2) =0 , @)

where a is a real positive number satisfyibel a < 1.

Lemma 3.1 Assume that & P(H1). WhenH; is selfoverlapping or whe% > a, there exists a largest
real positive solution of the fundamental equation that sati€fiesz, < 1. It is called the fundamental
root of (E;) and denotedz

Proof: Define the function of the real variabiter,(z) = D1(2)? — (1+ (a— 1)2)D1(2) — az1— z)D)(2).

It satisfiesra(0) = 0 andra(1) = P(H1)(P(H1) — @) that is negative ifa > P(H1). Moreover,r;(0) =

(1—a)(D}(0) +1). This derivative is strictly positive if\1(z) # 1. If Ai(z) =1, that is if H; is not

selfoverlapping, thery(z) = pz™[1—am—z(1+a—am) + pz™] andri™(0) > 0 if a < . Hencera(2)

has a zero if0, 1. 0
We are now ready to state the main result of this section.

Theorem 3.1 Let H; be a given word and a be some real number such thatR{H1). In a Bernoulli
and a Markov model, the random variable Xsatisfies

P = na) = ——e (11 0()) ®
where
I(a) = aln(Dl(z[:)l(zazll +Inzy 9)
2 N D (2a) (1-2)D7(za)
% = a@-1 az&( D1(z) Dl<za>+<1—za>D’1<za>> ’ (10)
8 = In| P(H)za” ] (11)

D1(za) + (1—Za)D1(2a)

and z is the fundamental root of ¢

Remark: Dl( ) is the generating function of a language [RS97a]. It satifig®) = 1. Hence, it has
positive coefﬂments and cannot be 0 atareal value. It followsdhét,) # 0 and thaD1(z3) +2a—1#0.
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Remark: It follows from @) that—w has a finite limit,l (a), whenn tends toe. This limit is
therate functionof the large deviation theory [DZ92]. Equatidrj (8) provides two additional terms in the
asymptotic expansion and a correction to the result claimed in [RS974a].

Remark: Whena = P(H;), Equation|(8) still provides the probability in the central domain. As a matter
of fact, the fundamental roa is equal to 1. The rate function I$a) = 0, as expected in the central
domain, and,; = 0. One can check that

This is the variance previously computed in the Bernoulli case by various authors [Wat95] and in the
Markov case in[RS97a].
The next proposition provides a local expansion of the rate function.

Proposition 3.1 The rate function | satisfies, for adyin a neighbourhood of a,

1(&) =1(a)+1'(a)(A—a)+ %I”(a)(é—a)2+0((é—a)3) (12)
where
I'(a) — |n<E)1(ZS)lz;‘l> , (13)
" 1
1"(@) = 2 (14)

3.2 Technical results
Our proof of Theorerh 3|1 is purely analytic. It follows from the definitioTofz, u) in (2) that

P(Xyn=na) = [2'|[u™Ta(z,u) .
Using the expressiofi|(4) this is

P(Xin=na) = [Zn}ngt)z)Z:lMl( )nafl .

Letus denotéD(DHll(—gzlMl(z)”a‘l by fa(z). Whennais an integer, this function is an analytic function.

Let us show that the radius of convergence is strictly greater than 1. The generating fiwiptions

the probability generating function of a language; hence, all its coefficients are positive and the radius of
convergence is at leaB®= 1. It follows from the equatioM;(z) = 1+ Dzl;é) thatM1(1) = 1: hence, the
radius of convergence & is strictly greater than 1. Now, this equation implies that the singularities of
M, are the singularities dd1(z) and the roots ob;(z) = 0. Hence, these singularities and these roots are
necessarily greater than 1. Finally, all singularitiesg¥) are greater than 1.

Let us observe that there exists a direct proof in the Bernoulli model. The Qié_%é& A (2) + 1%2 .

P(H)Zz™ has only positive coefficients; hence, the root with smallest modulus is real positivé; (As
andP(H)Z™ have positive coefficients, a real positive roofif(z) is greater than 1.
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Cauchy formula for univariate series can be written as

1 [ 1 P(Hyz™

- - na—1
2} A Dygz M@ Az,

P(Xin=na) =

where the integration is done along any contour around 0 included in the convergence circle. We define
the functionh,(z) of the complex variable by the equation

ha(z) =alnMi(z) —Inz .

The integral above can be expressed in the fdga) = 5 § €M@ g(z)dz whereg(z) is an analytic

function. Hereg(z) is set to beHl—le W@ — le(;((gll)éTizfl)' We need to establish an asymptotic

D1(2)?
expansion of this integral.

Theorem 3.2 Given an analytic function g, leg{a) be the integral

Jo(a) = %1 jf ehe@g(z)dz . (15)

If g is such that ¢0) # O, then the integral g a) satisfies

—Nha(za) 1 d 1 / 3
where
— Ga
Ta = % ’
he) (z)
Ba = 3!71_21 )
hs! (z)
Yoo = 4z

and z is the fundamental root o[k?). If there exists an integer | such th@ & z'g(2) is analytic at
z=0, with G(0) # 0, then

B 1 12 1 3Ba 1 G(z))! 1
R A ) LA R

Before dealing with the proof of Theore@ 2, we observe thé,) is the functionl (a) defined in
@) and that the dominating term %—zlﬁ =9(z ) o 65: This is EquatlonEB) The following terms
in the expansion will be necessary to deal with conditional events in Sé¢tion 4

Proof of Theorem[3.2: We prove [(IB) by the saddle point method [Hen77]. We need to establish a
technical lemma.
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Lemma 3.2 Let a be a real number. The functiog(k) = alnM1(z) — Inz and all its derivatives are
rational functions of @ and its derivatives. They satisfy the following equalities:

ha(za) -I(@ ,
ha(za) = O,
M(z) = .

Moreover, there exists a neighbourhood gfimcluded in the convergence domain, and a positive integer
n such that

R (ha(z) —ha(za)) 2N - (18)

Proof: A differentiation of Equation| (5) shows that the derivativeshgfz) are rational functions ob;
and its derivatives. The values at pofollow from the Fundamental Equatioky). Ash”(z,) > 0, the
second derivativl” is strictly positive in some neighbourhoodzf this establishes the lower bound on
the real part. O

Let us chose a suitable contour of integration fpr| (15). A Taylor expansidg(ef andg(z) around
Z=1Z7, yields:

a(zaty) = halza)+ () + §h§?><za> L0 za) +OUP) |
9(Za+y) = 9(z)+yd(z +ng oy’) -
With the change of varlablye_ the integrand rewrites, whem? is small,
_ni(a) dz) x  d'(z) ¥ X Bad@)xt X 1
o) [1 G G i B e n Y )

We choose as a first part of the contour a vertical segiagrp] = [za — n‘—u,za+ niq]. In order to keep
ny® small whenny? tends towo, we choose% <a< 2 In that case, each terr provides a contribution

[T e X<dx = Fv/2rt These integrals satisfp, = W

not contribute to the integral. This yields an asymptotic expansi®{X{, = na) in p+1/2
We now close our contour in order to get an exponentially negligible contribution. The @nd (18)
implies that the contributions of the segmelftsz;] and[0, z,] are exponentially smaller than™ (@

We need now establish ({17). In order to ufe] (16), we rewrite

21 g(2) = [N G(2) = [ ING(z)

andFzp1 = 0. Hence, the odd terms do

whered’is defined by the equation
na=(n-1)a

It follows thatd= a+ %' + al]—zz +O(n—12). We substitutéd, n—1) to (a,n) in Equation ) and compute a
Taylor expansion of all parameters : the fundamental zgathe rate function (), the variance term,
and the constant terg(zy).
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Fundamental root The functiony(a, z) = ha(2) satisfies the functional equation

W

5, (&%) =¥a,22) = hy(z) = 0

whereg(a, z) = %—”Z’(a, 2). Itimplicitely definesz, as a functiorz(a) of the variablea. Two differentaiations
with respect t@ yield the derivatives of(a) at pointa. More precisely,

0p 00
da a2 =0
M 2
From%(a,z,) = Migzz:; =L and®(az) =N'(z) =13 = 2. We get
az, 1
Jay=-%=___1
@ 02 12az,

Hence z(8) = zy — Ta%za LH0(3).

Rate function We need here a local expansion of the rate functi@) around the point that is
interesting in its own.

3.2(8 x d 0
V(@& za) = w(a,za)+(a_a)<a¢+£ z’(a))
(a—a) (0% Y w o, R, .
T2 <0a2+26aaz z(a)Jraz'i(aHazz'z(a)>+O((a—a))
We have the following equalities:
Zw(a@ = My(z)=0,
0 2
ai(a 2) = InMy(2) N Tg(a’z) _ 0.
2
(39 LZIJ(a z) = M(z)=14,
Oy 09 1
aaaz(a Za) - %(a7 Za) - a .

The coefficient of&— a) reduces to‘% = InMy(2). The coefficient of&— a)? rewrites
Z(a) [ 2 5 Z(a) [ 2 1 Z(a) 1 1
e e A (=N - -

2 (aza Tz (@) 2 \az az 2az, 2t12a222 202
and [12) follows.

From the equatioa=a = a +a7, it follows that(n—1)(d—a) = al +O(n%) and(n—1)(d—a)?=
a2I2

+0( nz) and we get the rate function

1 12 1

(n—1)1(&) = —nl(a) +1(1(a) +alnMy(za)) - 22Zn
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As|(a)+alnMy(za) = Inzy andG(z,)Z, = g(z), this term provides the correcting term

~ 1,200 1 12 1
e a1~ L Lo
21322 n

n2

)

Variance We now compute the contribution Qf 3(n—1). We have:

(n—1t§ =g (1— 'ﬁ +21—é‘(é—a) +0(n12))

a

The equalityt2 = h(z) = %22‘2“ (a,z,) above implies that
LA P 0 _ o 2 (My(2)
2TaTa - da 622 (a’za) =h (23)Zl(a.)+ 020a =nh (Za)zl(a)+az M]_(Z) .
Hence, ,
éii 3tBa 1, 0 1y 3Ba 11
ng B T§< 128z, +a(ha(z) 22) B taaz;;‘Jra(1 ngg) '

Finally, (n—1)t3 = nt3(1— L(Z + fﬁ:) and the contribution is
a

1 1 |1 3Ba >
= 1+ (555 + .
Tav/n—1  Tayn ( n(ZT%Z§ tae)
Constant term  We now compute the contribution &f(zz). We have

o) (1+ G2 (@E-a)+0())
1

| G'(za) 1
Gle) (1_n G(za) 213 (n2>> '

G(za)

This is Equation[(1]7).

4 Conditional Events

We consider here theonditional countingoroblem. The conditional expectation and variance can be
expressed as functions of the coefficients of the multivariate generating function of the language of texts

7. More precisely, it follows from the equatid?(Xzn =kz| Xy n=k1) = W, that

zk2>0 kZP(X]_,n - kl anden == k2)
EXonXin=k1) = = .
( 2,!’1‘ 1n 1) P(Xl,n _ kl)

Definition (3) implies that

P(X1n=ki1) = [ZU4Ta(z w1) = (U T (Z us, 1) .
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Moreover:

Z koP(Xpn=Kki andXon=kz)) = Z ka[Z'US U2 T (2, U, Up)
2 2

oT
[z”u'f] ;kz[u'gz}T(z, Ug,Up) = [z“u'f]a—uz(z, ug,1) .
2

It follows that

k
[Znull} gTTZ (Za U, l)

E(Xon|Xon=k1) = (19)
PenXin=ta) U4 T (zuy, 1)
Similarly, we can prove
[Znuil] (02T(ZAL£1,UZ) + 0T(3U1,U2))
u:
Var(Xen | Xon = na) = ] 2 E((Xen | Xun=na)? . (20)

[2U2]T (2, ur)

Given two words, the softwar@egExpCounallows to compute and derivE(z,us, u). The shift-of-
the-mean method allows to compute the linearity constant for the mean and the expectation ih [Nic00].
This step is costly; notably, it must be repeated whearies.

Our closed formulae provide an efficient alternative. The general expressidriZarn, uz) given in
[Reg00] is a matricial expression that is not suitable for the computation of the partial derivatives that
occur in [19) and (20). In 4}1 below, we provide a new expression that is suitable for a partial derivative.

m
At point u; = 1, the partial derivatives rewrite fﬁlﬁﬁ)z)) wherey is analytic inzin a larger domain
thanm}mz}. Hence, the methodolny of SectiEF 3 applies.

4.1 Multivariate Generating Functions for Word Counting

Our enumeration method follows the scheme developedag@R]. More details on this formalism can be
found in [REg00]| SzpQ1]. In this paper, a sethafsic languagegheinitial, minimal andtail languages,
is defined and any counting problem is rewritten as a problem of text decomposition over these basic
languages. This is in the same vein as the general decomposition of combinatorial stuctures over basic
data structures presented in [F§96]. Such basic languages satisfy equations that depend on the counting
model. These equations translate into equations for corresponding generating functions, and multivariate
generating functions for the counting problem are rewritten over this set of basic generating functions.

We briefly present this formalism when two words &hd H, are counted. The initial languag®&s(for
i =1 or 2) are defined as the languages of words endinghitind containing no other occurrence of H
or Hy. The minimal languag@/; ; (fori € {1,2} andj € {1,2}) contains the worde which end withH;
and such thaljw contains exactly two occurrences{dl;,H,}: the one at the beginning and the one at
the end. The tail Ianguagéi is the language of words such thatH;w contains exactly one occurrence
of H; and no othe{Hj,H,}-occurrence. For example, let us assume thatHATT and H, = TAT. The
text TTATTATATATT can be decomposed as follows:

TTATTATATATTTT and TTAT T AT AT AT T TT
€R eM €U €Ro EMz‘lEMLzEMz‘gEMz‘zEMZJ el
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Among the many decompositions @f according to these languages, the following new one is of
particular interest for conditional counting.

Theorem 4.1 Let ‘T, C T be the set of words on the alphalgetvhich contain at least one occurrence of
H, or at least one occurrence bf,. It satisfies the language equation

T, = RoM o T + R My Ty (21)
that translates into the functional equation on the generating functions

WwR2(2U2(2)  uiR1(z u2)U1(z W)

22
1—uaM22(2) 1-uMy(z up) (e2)

T(zup, W) =

Proof: The first term of the right member is the set of word<Zafwhich do not contain any occurrence
of Hj ; such a text can be decomposed accordingtzeé¢turrences, using basic Ianguagesszz , .
The second term is the set of wordsGf that contain at least one occurrence qf Huch a text can be
decomposed according to ldccurrences, using basic languaggsi, ;. a

The proposition below establishes a decomposition of the basic languages for a single pattern onto the
basic languages for several words. The bivariate generating functions that ceaatiirences in these
basic languages follow.

Proposition 4.1 Given a reduced couple of wordsi;,H>), the basic languagesatisfy the following
equations:

R = R+ ReMs M1
U = ‘le + Ml,zMz*,z ‘212
Ml Ml,l + M112M£2M2,1 .

The multivariate generating functions that cotty-occurrences in these languages are:

5 U2F§2(Z)M271(Z)
R]_(Z7 Uz) = R]_(Z) + m (23)
Uiz = Ou)+ SEZ B @)
- U2|V|1,2(Z) Mzﬁl(Z)
Ml(Z) = Ml,l(Z) + TN'ZZ(Z) . (25)

Proof: The proof of the first equation relies on a very simple observation: a wandg®; is not in17~{1 iff

it containsk occurrences of hibeforeH;, with k > 1. Hence, such a word rewrites in a unique manner:
W = raWq..Wk_1Mp 1 Wherers € Ko, Wi € Mo 2 andimp 1 € Mo 1. A similar reasoning leads to the second
and third equations. O

4.2 Partial derivatives

The proof of our main theorems, Theorgm |4.2 and Thedr m 4.3, relies on a suitable computation of the
partial derivatives of the bivariate generating function. Nota ., z,up,1) yields the generating function
of conditional expectations.
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Proposition 4.2 Let(Hj,Hz) be a couple of words. The bivariate generating function oftheonditional
expectation oH,-occurrences is, in Bernoulli and Markov models:

U]_(p]_(z) + u%(pz(z) (26)

I Zund) —aqo(2) + :

oup 1-uMi(z1))  (1-uMy(z1))2
where
_ (=P(H1)D122(2)z™ + P(H2)D1(2)2™) (—D21(2) + D1(2))
(R)(Z) - (1_ Z)ZDJ_(Z)Z ’ (27)
~ —2P(H1)D21(2)D12(2)z2™ + P(H2)D1(2)D2,1(2)2™ + P(H1)D1,2(z)D1(2)zZ™
(p]_(Z) - (1—Z)D1(Z)3 I (28)
Proof: Deriving with respect tai, yields:
L(Z Ui U ) . Iig(Z)Uz(Z) Uy aRj_(Z, U2)U1(Z, Uz)
0U2 L H2 o (17U2M272(Z))2 17U1M1(Z, Uz) 6U2

U% aMl(Z7 Uz)
A uMi(z ) Uizl =5, =

Equations[(ZB)F(Z5) allow for an easy derivation[of]|(30). The partial derivatives of probability generat-
ing functions of language®;, 1, and9/; satisfy the following equations:

0Ry _ R(@M21(2)
a2 = A wMaa()?
U, _ Mi12(20z(2)
e ®? T s M)
oM, _ M12(9M21(2)
au, P T M)
Hence,
My R@0@ ug Ra(2)M24(2)U1(z Uz) + Ra(z U2)M1.2(2)U2(2)
o T T (1 pM22(2))2 T 1 uMy(z W) (1~ u2M22(2))2
w2 Ry (z,U2)U1(z,u2)M1 2(2)M21(2)
* (1—uMy(z, w2))? (1—u2M22(2))? <0

To complete the proof, we rely on the results proved in [RS9#8g0R], where the monovariate gener-
ating functions of the basic languages are expressed in terms of the coefficiBri3.d¥lore precisely:

Proposition 4.3 The matrixD(z) is regular wherjz| < 1. The generating functions of the basic languages
are defined by the following equations:

(Ru(2),Rx(2)) L, P(H2)Z™)D(2) 31)
[-M(7 = ( ) () o (32)

{3;8} - ].iZD(Z)l[ H . (33)

/\
/—\
\_/
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The classical inversion formulae in dimension 2 lead to the equation

]D)(Z)il _ 1 D2,2(Z) —Dlﬁz(Z)
determinantD(z)) | —D21(2)  Di1(2)
Settingu, = 1 in (30) and substituting the expressions giverj in[(3{1-33) (26). O

4.3 Conditional expectation
Our main theorem is Theorefm_4.2 below. We introduce a few notations.

Notation: Let us denote
P(Hl)Zml

9(2) 2D,(2)(D1(2) +z—1) (34)
= P(H1)z™ D12(2)D21(2)
92 = z  D122Di(2) +z-12 (35)
Let us denoté andl the orders at = 0 of g andg, respectively, and let
Y N @ _ D172(Z)D271(Z)
6(2) = 02  D1@)(O:D+2-1) | (36)
0z = Z27'8(2) (37)

Theorem 4.2 Let T be the language of all possible words on an alphahef\ssume thaf is randomly
generated by a Bernoulli or a Markov process. Given a reduced couple of Wididsl»), we denote X,
and X%, the two random variables that count the number of occurrenceéf @indH,, respectively. The

conditional expectation of 2, knowing that% =ais
E(Xzn | Xpn = na) ~ nu(a) +A(a) (38)

where p and\ are functions of the autocorrelation polynomials at the pointhat is the solution of
Equation [T). With the notations ¢f|(8) arjd [3f){(37), these functions are

Wa) = adz) | (39)
_ _ | _
M) = Bz + 3arn0l h —aggs (0120 +20/a) T 0 ) )
b DR | ) (1)
1)4a a
T O R (SR S [ (40)

with

1 1 ¢ Di(2)+z-1
e (e ) )



206 Mireille Régnier and Alain Denise

Remark: In the central region, the substitutions= 1 anda = P(H.) in (39) steadily give thafi(a) =
P(H2).

Proof: We are ready to compute (19). To get tear term we observe that

u2

2 (1—uMi(z1)?

= [2"(ky — )My (z,1)l2

We observe tha1(z 1) is equal taM1(z) in the previous section and thay 1(z) = D1(z). With ks = na,
the ratio [I9) to be computed becomes

[2']@2(2)M1(2)"> 2
P(Xyn = na)

[2"2(2)M1(2)"* 2
Jy(a)

In this ratio, the computation of the numerator contribution is similar to the computatigrj of (8). The

integrand rewrites
1 _
—— ha(2)
Jg@) = 5 f e@g(z)dz |

whereg(z) = 22, — P(Hyz™  _ D12(2D21(2) 7z and the rat|0l9) becomé¢ra— 1 JL Using l)

(na—1)

=(na—1)

e h(2) z D1(2)2(D1(9)+2-
this is

Cpde@ [, 1 P12 1 3a\i-l 1 (Gl G, 1
(na 1)\](;(a)zl'c1 1 2212 n * 22§T§+Taza n 13z \G(z)n G(za)n +O(n2)

We use‘) to comput%z‘61 |, The exponential terms simplify and tggerms cancel. The rat|l9)
becomes

Glza) J- 1 38 (Gza) G(z)) 1 1 (G'(z) G'() 1
(na-1g= [”n ra(G<za> >> : 2r2(e<za> G<za>>+°<n2)}

G(
1 122 1 3B\ -1
{12&5' n +<zg +Taza>n

X —_
1 (G(z)] Glz)! 1
- R — o(=
32 <G(Za) n  G(z) n) O
With the notations above, we ha\%{;uz' ! g(— _( 2). It follows that thelinear termis

Let us compute now theonstant termFirst, f% yields a Contributiowé(za). Second, we observe

that % = amsz(z)_ This yields a contributiora- 8(zy) - 3% . W(za) = a%@’(za)z';*'. Third, the
general equation

/(z)  9%Inf(z) [0Inf(2)\?
fiz) ~ oz +< 0z >
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implies that
G'z G'(7 e (Gl G@)\[(G@r G©
Gz Gl oz +< @ G(z))(@(zﬁe(z)
9z 9(z)* 9@ (9@, ,G@
~ Bz 0@’ o) (e<za>+26<z>)
1 [ ,._.0InG(2)
] CASRECTAE Y

which contributes

-1

The next contribution igi(a) (12 — IZ)(@). The last term in the product contributes

WA (g + oo ) - g (P2 a

1 3B, Iz g alnz"!

Furthermore, we have

u@) (-9nz'glz)  dlnz'g(z) _ wa) (AIngz dIng(2) @) -
ZT2 (l oz ez >(Za)_zaT§ (I oz oz )(za)+z§r§(|2_|2)

Finally, the last contribution to the constant term comes from

ZUne@)(1-uMi2) ™ [Fe@Mi@™ "

P(Xin=na) P(Xyn=na)

This coefficient is
@(z) 1 _ @u(z)Di(z)?

ZMi(z2) 0(za)  P(H1)za"

4.4 Conditional variance

We prove here that the variance is a linear functiom,axcept for a few degenerate cases. We provide
the linearity constant.

Theorem 4.3 With the same conditions as Theo 4.2, ¢baditional variancef X, ,, when X is
known and equal to na, is a linear function of n. More precisely,

Var(Xon | X0 =na) ~ nv(a)

where

v@) = pa) 142 M22&) 5o, M@ (6'”6(26‘)>2] . (41)

1- szz(za) B G(Za) Tg 0z
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Remark: It follows from (41) that the expectatiamu(a) is a tight approximation of the variance, when
Mz 2(2) is small. This is the usual case, but the contributioné%?% may be significant, for instance
when H = x*, wherex is some character of the alphabet. '
The linearity constant may also be 0 in some degenerate cases. For example, with an alphabet of size 2,
the choices of the two wordsB andBA leads toM 2(z) = 0 andB(z) = 1. The variance is 0. As a matter
of fact, the difference between the number of occurrencésBand the number of occurrencesiBA is
at most 1.

We now use the formulg@ (P0). We only need to compute the second partial derivafiveVdé pro-

ceed with a second differentiation 30), using again the partial deriva%ﬁle(x Uz ,3321 (z,up) and

%'\Lfl (z,up). This yields notablf— % and, finally, we get ProposmoBA below.

Proposition 4.4 With the same hypotheses as Proposifion] 4.2, we have

o°T _ u1P1(2) ufP2(2) U3 (2)
o B =We@+ F e T WV T T A Mz TP (42)
where
L ®(29M22(2)
Yo(2) = ZW ;
Dl(Z)z

Pi(2) = 2%(2)(92(2)'W7

2
() = ZCPZ(Z)[(PL(Z)PI(DI-TE)Z)ZW 1M§}|22(.2222)]7

D1(Z)2

Ws(2) = 2@p(2)*

Proof of Theorem [4.3: As a consequence d¢f (42), we get
k1 OZT(Z, us, Uz) _ LIJ3(Z) (kl 7 1)(k1 — 2)
[ul ] U2 M 3’
5 l(Z) 2
Let us denote:

P2 (2) +llJ1(Z) Mi(2) .

D22 Tk

_ W@ W0
Cz2M1(237 T Z2-My(2)2

[(o}]

It follows that

0°T(z,u3,up)  (na)®>—3na
ou3 B 2

2 J(a) +naJi(za) + O(e @) .
Hence,

Var(Xon | Xyn =na) =

2a2 jig n<_§ SEZF ;Ezzzsﬂ( ))—(nu(a)+x(a))2+o(1) .
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To achieve the derivation, we need to establish relationships be(geg(Z) andg(z). We check that

8@ (9D _ 5
a5 =255 =% *3)

It follows that the quadratic term%SE and (‘SEZO cancel. Consequently, thariance is a linear
function of n. In a few degenerate cases it is a constant function. Let us compute now the linearity
coefficient. First of all, the sum-3a- g + u(a) contributes byu(a)(1—36(z)). The term—8(z)

in A(a) yields the contribution |2(a) 6(za ) Then we consider in turn the terms iEle) a@ (17) that

2e Jg< a) f(za) _ D1(2)°¢) (za)
contribute ton @ 3z and —2np(a)A(a). ( ) —2u(a) - W' As

— — L@ ihis di i
a% =u(a) and g&? = (pjg) , this difference simplifies into

W2(2) Di(za)’¢u(za) M2 2(Za)
“(a)(wz)‘z P(H)Z™ )‘2“<a)1mz,z<za>'

We now observe that other contributions %fu% and E X2n have a common multiplicative factor:
2

. _
% 5 = (552 = u@? or —2u(a)-afE = ~2u(a)> )

The next terms are t}“(ez[— +1 ?’Ba 5 ) terms; the contributions afga) 2(f—1) and—2p(a)%(1 —1). Equa-
tion (43) implies thaf — | = 2(1- —I) Hence, these two contributions cancel. Similarly, tife- 12) and

(12 —12)-terms contribute

nu@?- D212y — 22 12)

34
Asi—1=2(1—-1), we havel — I =1 —1. Hence,(i2 —12) — 2(12 — I2) rewrites 21 —1)2 and this yields
_H@Z T2
2z (1=

0In%
The two termsu(a)? - 3‘1""- G(Za and u(a)?- 38@% contribute

G(za) G(za)
Ta 0z 0z
Using again[(433), we get
é G
dln 55 :zaln@ (44)
0z 0z

and these terms cancel. Now, we have

&'@ o'@ ®ngy gl anE@em)
Gz G oz 0z 0z '
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. P& PinS
Deriving (44), we get— =2 . Hence, the two terms

72 072

a2 (62'“253 Lo _aln<é<z>e<z>>> .

072 0z oz
and
2in 6@ G(2) _
—2u(a)? 9 ln@Jra'nw 0In(G(2)G(2)) %)
072 dz oz
contribute

0z 0z

o o
@ (mn & ,aln<e<z>e<z>>) 22 (6'n = .aln<e<z>e<z>>) @

~ ané® _
We can factorize 222 and rewrite :

|~ I

an(G(z)G(z) dIN(G(2)G(z) _ ain( ) an(%2) _ aIn(g3)

0z 0z 0z 0z 0z

Finally, the contribution of these two terms is

on &2 _ 2
2o )@ g =M (T )

The last contribution is

% [(ralnaG;(z) _IalnaGZ(z)> (z2) 2 (l—alnan(z) _IalnaGZ(z)) (Za):|

H(a)?

. on(%2)  an%2) o~ = =
The third factor can be expressed as5.6— — 2l —55— = 2(I - 1) —5— =2(I - 1) —;

overall contribution of

21 _12 2 _ G
u@ l“ C () roin 2 )<za>]
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5 Conclusion

Our formulae apply for both Bernoulli and Markov models for random texts generation and provide sharp
large deviation estimates. This approach needs much less computations than exact methods, in the domain
where such methods are computable. Experimental evidence is presented in [DRV01], where our results
are compared to others ([BFVY@0Q] andRSA-toolk Other applications, and a comparison with other
methods[[RS98, NueD1, RS01], are presented &gpR3] and will be extended in a forthcoming paper.
Maple procedures that implement a part of our results are available on request. An extension to under-
represented words is possible, and related results are preserted inl[VMO3].

A slight modification allows for the extension of these formulae to other counting models, such as the
renewal mode]lWat95/ TA97]. A natural —and useful- generalisation of this work would be to give similar
formulae for sets of motifs. In particular, computing expectation and variance conditioned by several
overrepresented motifs would be useful to detect new significant information in biolnical sequences.
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