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Coxeter-like complexes

Eric Babsoh and Victor Reinelf

!Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195-4350
2School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Motivated by the Coxeter complex associated to a Coxeter syStens'), we introduce a simplicial regular cell
complexA(G, S) with aG-action associated to any p&i, S) whereG is a group and is a finite set of generators
for G which is minimal with respect to inclusion.

We examine the topology @k (G, S), and in particular the representations(®fn its homology groups. We look
closely at the case of the symmetric graiip minimally generated by (not necessarily adjacent) transpositions, and
their type-selected subcomplexes. These include not only the Coxeter complexes of type A, but also the well-studied
chessboard complexes.

Keywords: Coxeter complex, simplicial poset, Boolean complex, chessboard complex, Shephard group, unitary
reflection group, simplex of groups, homology representation

1 Introduction.

The Coxeter complexX\(V, S) associated to a Coxeter systé, .S) is a beautiful simplicial complex
which encodes the structure of the Weyl chambersiforlts poset of faces has a very simple description
as the poset of cosets of parabolic subgroups ordered by reverse inclusigh.[X), This description
has many consequences for its topology and homology representations.

In this paper, we propose a more general construction of a simplicial cell complex for @G&iy
whereG is a group ands is any finite generating set which is minimal with respect to inclusion. We
observe a number of easy general facts about these complexes in §gction 2, and give many examples in
Sectior 3.

In Sectiorf 4, we focus on the case whére- G,,, the symmetric group, anflis a set of transpositions.
HereS corresponds to a choice of spanning treeworertices, andG, S) forms a Coxeter system exactly
when this tree is a path. There turn out to be many constraints on the homology representati@isOf
in this case, some related to the properties of the spanning tree. In particular, we are led naturally to
consider type-selected subcomplexed\dt7, S), which turn out to include the much-studied chessboard
complexes as a special case.

In Section[$, we look even more closely at the special case where the spanning tree has only one
branched vertex (i.e. vertex of degree at least three). Here one can prove further constraints on the
homology, and our results are most complete when the unique branched vertex has degree exactly three.
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1365-805QC) 2004 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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2 Generalities.

2.1 The cell complex and its face poset.

This section gives the basic construction, and explores some of its general properties. Good references for
some of the terminology and facts regarding posets, simplicial complexes and cell complekés are [3] and
[4].

Let G be a (finitely generated) group, afd finite generating set fa@r which is minimal with respect
to inclusion. Given any subsgtC S, let G; denote the subgrou{y) generated by in G (by analogy
with Coxeter groups, callz; a parabolic subgroup Form the poseP (G, S) whose elements are the
cosets{¢gG; : g € G,J C S} with ordering byreverse inclusioni.e. gG; < ¢'Gy if gG; D ¢'G .

Proposition 2.1. P(G, S) is a simplicial poset in the sense of Stanleyi [31], that is, every lower interval
in P(G, S) is isomorphic to a Boolean algebra.

Proof. It suffices to show that i§Gy C ¢'Gk theng' G = gGk andK C K’, since then the interval
belowgGk in P(G, S) would consist of gG ;|J O K}, and hence be isomorphic to the Boolean algebra
25—K via the magG ; — S — J. To show this, we have these implications:

9Gk Cg'Gr = 1€ Gk C g 'gCGk
=9 'dGr =G
= ¢ G = gGg
= 9Gk C gGrr
= Gg C Gy
=KCK'

where the last implication uses the minimality of the generating'set O

A simplicial posetP is balancedf there is a coloring of the atoms @t so that every maximal element
of P lies above exactly one atom of each color. Cledtly=, S) is balanced with color s&t by assigning
the atomgG's_ () the colors.

We have the following immediate consequence.

Corollary 2.2. There is a unique (up to isomorphism) balanced regular cell complex of Boolean type [4]
or Boolean complex[16] having (G, S) as its poset of faces. O

We denote this regular cell complex having face pd3gf, S) by A(G, S); it will be our main object
of study.
The regular nature of the face podetG, S) implies that the Boolean compleX(G, S) enjoys many
of the pleasant properties of Coxeter complexes, which we review here.
Recall that a purel-dimensional cell complex igallery-connectedf any pair F, F’ of d-faces are
connected by a path
F=Fy,F,...,Fo_1,F, =F'

of d-faces in whichF; andF;;, share gd — 1)-face for eachi.
The next proposition is immediate from the definition®fG, S).
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Proposition 2.3. (i) A(G,S)is a pure Boolean complex of dimensjéi—1, which is gallery-connected
and balanced with color sef.

(i) The groupG acts transitively on its maximal faces.

(i) Stabilizers of codimensiom faces are non-trivial cyclic groups, and the stabilizer of an arbitrary
face is the subgroup generated by the stabilizers of the codimeh&mes containing it. In partic-
ular, the transitiveGG-action on maximal faces is simply transitive.

Remark 2.4. It is not hard to check that the properties listed in the preceding proposition completely
characterize the Boolean complex®&7, S). To be precise, if one assumes thais a balanced Boolean
complex carrying a-action satisfying propertief§ (i}, [ii) listed above, thérhas a minimal generating
setS consisting of a set of generators for the cyclic groups that stabilize the codiménfsioes of some
fixed maximal face of\, andA = A(G, S).

We also no@ that A(G, S) is a very special case of what has been callédexelopable) simplex of
groups(see([1852.4] and [30]).

Although A(G, S) has simplicial cells, it need not be a simplicial complex; see Exa@]e 3.4 below.
However, there is a simple criterion for this to occur. Given any Boolean compl@ith vertex set
(0-cells) V, define an abstract simplicial compléxon the same vertex s&t as follows: F C V spans
a face ofA if and only if there exists at least one cell Af containing all the vertices ifr. Given any
cello of A, letvertices(o) denote its set of vertices. The following fact about Boolean complexes is then
straightforward.

Proposition 2.5. For any Boolean complex, the map
f: A — A
o +— vertices(o)
induces a dimension-preserving simplicial surjection.

It is an isomorphism if and only if every cellof A is uniquely determined by its set of vertices, or
equivalently, if and only if\ is a simplicial complex. O

In the case ofA = A(G, 9), there is a natural alternative description/ofwhich ties it in with Tits
coset complexess studied in [5] and [17]. Let

C(G,S)={9Gs_s:9€ G,se S}

denote the covering of the s6tby the cosets of maximal (proper) parabolic subgroupsALEE(G, S))
be thenerveof this covering, that is, the abstract simplicial complex with typical vertex labgled |
and a facgg;Gs—s, }7_; wheneve,_, ¢;Gs—_s, # @.

¥ Thanks to Mike Davis for pointing this out.
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Corollary 2.6. The simplicial compleX\(G, S) which is associated to the Boolean comp&{G, 5) is
N(C(G, S)). Hence the map

f: A(G,S) — N(C(G,S))
gG y — {9gGs_s:s€S—J}

induces a dimension-preservidagequivariant cellular surjection.
Itis an isomorphism if and only {{G, S) satisfies the intersection condition

(| Gs-«=G,  foreveryJcS§, (2.1)
seS—J

or equivalently, if and only if\(G, S) is a simplicial complex.

Proof. The first assertion is a restatement of the definitions. The rest is then a straightforward application
of Propositiorf 2.6. The condition that every cell is uniquely determined by its vertices translates into the
intersection condition: we always have an inclusion

Gy C ﬂ Gs—s,

seS—J

but whenever there exisgse (ﬂseS_J GS,S) —GythengG; # G give two different faces oA (G, S)
with the same vertex set. O

Remark 2.7.

All of the previous results easily generalize to a relative framework that incllitebuildingsassociated

to groups with aB N-pair. LetG be a group, and® any subgroup. Given a finite subsetc G which is
minimal with respect to inclusion having the property that (B, S), define subgroup®; := (B, J)

for J C S. Then the poseP (G, B, S) whose elements are the coséts?; : ¢ € G,J C S} with
ordering by reverse inclusion is again a simplicial poset, so it is the face poset of a unique regular cell
complexA(G, B, S). This A(G, B, S) shares many of the properties A{G, S) proven above. In the

case wheré& is a group withBN-pair having associated Coxeter systéii S), this A(G, B, S) is the

usual Tits building.

Remark 2.8. We should mention that Brown|[7] recently studied a (different) topological space built
from proper cosets of a group ordered by inclusion. We are not aware of a direct link with his work.

2.2 Pseudomanifolds, links, and singularities.

Note that maximal faces oA (G, S) are indexed by coseigG» = {g} and hence correspond to the
elements ofz. Codimension one faces are indexed by cogéts,,, and such a face will lie in as many
facets as the order ofin G. SinceA(G, S) is gallery-connected, this implies the following.
Proposition 2.9. A(W, S) is a pseudomanifold if and only # contains only involutions. When this is
the caseA(W, S) is orientable as a pseudomanifold if and only if the set map

e: S — Z*={£1}

s -1
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extends to a group homomorphigit> Z*. In this situation,
H\S\fl(A(G7 S)a Z) =7

and the homomorphisicoincides with the action a¥ on this top homology.

In the cases wherA(G, S) is a pseudomanifold, it is often singular. The following trivial proposi-
tion about the links of its faces is helpful in understanding its singularities [(sé& 313, for a careful
discussion of links in simplicial posets).

Proposition 2.10. The link of the face indexed lgy=; in A(G, S) is isomorphic toA(G 5, J). O

Note that this implies that the singularities Af G, S) are fairly easy to understand by induction on
|S|. In particular, we have the following.

Corollary 2.11. WhenS contains only involutions, the singularities of the pseudomanifglé’, S) have
codimension at least In particular, whenS consists of involutions and| < 3, thenA(G, S) is smooth.

Proof. Use the previous proposition and Proposition] 2.3. The link of every codimension 2 face is a
gallery-connected pseudomanifold of dimension 1 and hence a sphere. O

2.3 Morphisms and quotients.
Given pairs(G, S) and (G, S) as above, say that a group homomorphismG — G is amorphism of
pairsif ¢(S) C S. The following proposition is straightforward.
Proposition 2.12. The map on cosets X
G = $(8)G )

induces an order-preserving map of poth(s”}', S) — P(G,S) and hence also a map of Boolean com-
plexesA(G, S) — A(G, S).

Furthermore, surjectivity of the following maps are equivalent:

(i) A(G,S) — A(G, S),
@iy P(G,S)— P(G,S),
(i) G — G,
(iv) S — S.
Lastly, the mam(é, S) — A(G, S) is dimension-preserving if and only if the mép— S is injective.
O

Morphisms of pairs relate to a natural construction qfiatient compleX/\A(G, S) for a subgroupd
of G (hereH acts on cosetgG ; by left-translation). Because the left-translation actiofladn A(G, S)
is type-preserving (so in particular, a face is stabilized by a group element if and only if it is stabilized
pointwise), this quotient is again a Boolean complex whose geometric realization as a topological space
is homeomorphic to the quotient space of the geometric realizatidx(6f S) by the action ofH. Its
face posetd\ P(G,S) has the following description involvindouble cosetdl ¢G ;: the elements of
H\P(G,S) are pairdJ, HgG ;) whereJ C S andg € G, and we define

(J,HgGJ)S(J/,Hg/GJ/) if JQJ’anngGJQHg'GJ/.
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Remark 2.13.
The previous definition off\ P(G, S) corrects[[24, pp. 12-13], where it was incorrectly asserted that
H\P(G,S) is the poset of all double cosef$l¢gG; : g € G,J C S} ordered by reverse inclusion.
Fortunately, this has no effect on the later results of [24], as they proceed from the (correct) assumption
that the faces off \ A(G, S) having color sefs — .J are in bijection with double cosets of the fodifyG ;
insideG.

The slight subtlety here is that whenever there exist coincidelig€s; = HgG 5 for J # J' (as hap-
pens in many interesting examples), there will exist different poset eletém& G ;) # (J', HgG ;)
with the same double coset in the second coordinate (but different coloSsetd: # S — J').

A good example of this occurs whéh = G, sothatHgG ; = G forallg € GandallJ C S. Then the
quotient complexG\A(G, S) is an(|S| — 1)-simplex whose face posét\ P(G, S) has element&J, G)
for J C S, ordered by reverse inclusion on the first coordinate.

Proposition 2.14. Let ¢ : (G‘, 5‘) — (G, S) be a morphism of pairs which is bijective when restricted to
amapsS — S, and let
K :=ker(¢: G — Q).

Then there is an isomorphism of Boolean complexes
K\A(G,S) — A(G, S)

induced by the isomorphism of face posets given by

(J, K§G j) — 6(3)G )
Proof. Using the fact thaf( is a normal subgroup, so that

K§G; = gKG; = §G ;K
and the fact thadr = G‘/K, it is easy to check that the above map of face posets is indeed an isomorphism.

O

Corollary 2.15. When(G, S) has S consisting of involutionsA(G, S) is a quotient of the Coxeter
complexA (W, S) for the Coxeter syste, S) in which the order o83’ in TV is defined to be the same
as the order ofs’ in G. O

As will been seen in the next section, this corollary can be useful for visualizing examples#hisre
small. Here one can often identify the Coxeter complf{)ﬁ/, 5‘) either as a sphere or affine space (when
(W, §) is finite or affine), and visualize the action &f on this space giving rise to the quotient space
A(G,S). P. Webb has also pointed out to us that many finite simple groups have involutive generating
sets whose presentations (as listed in the Atlals [11]) exhibit them as quotients of Coxeter groups by easily
described subgroups. See alsd [24] for some combinatorics related to quotients of Coxeter complexes.

2.4 Homology representations.

From the homological viewpoint, a pleasant feature\gtz, S) is the simple description of its cellular
chain complex. Given a coefficient rin, as R[G]-modules, the (augmented) cellular chain groups
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C.(A(G, S), R) with coefficients inR can be described in terms of coset representatitjoy H|:

0 — R[G] — @R[G/G{S}] —

seS
RN @ RIG/Gj] — --- 2.2)
JCS:|J|=i
— @R[G/GS,S] — R —0.
seS

Here the boundary maps can be defined componentwise, and up to sign, in each component are the natural
mapsR|G/K] — R|G/H] with [¢K] — [¢H] wheneverK C H. The homological indexing is given by

Ci(A(G,S),R) := & R[G/G ).
JCS:|J|=|S|-1—i

One consequence of this is an expression fo(b@uced) Euler characteristiwhend is finite:

S|—|J|-1 (—1)|S|—\J\—1

Jcs JCS |Gl

Another immediate consequence is the following description of the top homology as an intersection of
kernels.
Corollary 2.16.

Hi5|1(A(G, S), R) = (] ker(R[G] — RIG/Gys))-
sES
O

The previous corollary already tells us something, wiiérs finite, about the occurrence of one-
dimensional representations@fin the top homology considered a&&=]-module. We use the notation
(V, W) to denote the inner product of the complex characters ofd{@-modulest” andW. Recall that
for any irreducibleC[G]-moduleW, the quantity(V, W) computes the multiplicity of¥ in V. Given a
subgroupH of G, letV |& andV 1% denote the restriction and induction of representations to and from
H respectively.

Proposition 2.17. Letxy : G — C* be a one-dimensional representation(éf Then

1 ifforall s e S, onehasy Lg{s}7é 1

<H‘S|,1(A(G,S),C), X> = {0 else.

Proof. One knows thaC[G] = C|5-1(A(G, S),C) carries exactly one copy of each one-dimensional
representatiory, namely as th€-span of the element

> x(g g
geG

It is then easy to check that C ker(C[G] — C[G/G4]) if and only if x lg{s};é 1, from which the
statement follows. O
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2.5 Type selection.

Whenever one has a balanced Boolean complexith color setS, one can talk about itg/pe-selected
or color-selected subcomplex; for J C S, that is,A ; is the subcomplex induced on the set of vertices
whose color lies inJ. Since the face indexed by ; in A(G, S) has color seb — J, the type-selected
subcomplexA(G, S) s is the unique Boolean complex whose face poset is

P(G,S); :={cosetyGgk : S—J C K,g € G}

ordered by reverse-inclusion.
The following proposition is the key to many deletion-contraction arguments in Sg¢tion 4.

Proposition 2.18. If G is a group, S is a finite minimal generating set ande J C S then there is a
short exact sequence of complexe€{]-modules

0 — Co(A(G, S)y—s) — Co(A(G, S) )
— (Co(A(Gs—s, S — 8)y—s))1] 1&,__— 0.

Here C,[1] denotes the chain compléX with degree shift by, i.e. C;[1] = C;_1, and 1 denotes
induction of a representation from a subgrofipto G.

Proof. The injective map is induced from the inclusion
A(G,S)j-s — A(G,S) .
The rest is straightforward. O

Remark 2.19. The short exact sequence in Proposifion P.18 actually reflects the cofibration sequence

AG,8) s = AG,8);— \/ Susp(A(Gs—s.S —5)s)

or in other words, the quotient spaggG, S);/A(G, S) ;- is homotopy equivalent to the one-point
wedge of[G' : Gs_¢,;] copies of the suspension &(Gs_(.},S — {s})s—{s}. This generalizes [8,
Proposition 2.1].

3 Examples.
3.1 Euclidean reflection groups.

A Euclidean reflection groupl is a finite group acting faithfully on a Euclidean spa¢eand generated
by linear reflectiorﬁ Such groups are known to have a minimal generating set of refleciianisich
endows W, S) with the structure of €oxeter systergseel[20, Chapter 1]). In this cask®(WV, S) is called
the Coxeter complexand the description of its poset of facB§IV, S) was our motivating example. Here
A(W, S) triangulates the sphefgi™V~1 and may be identified with the simplicial decomposition of the
unit sphere irl/ by the reflecting hyperplanes for the reflection$lin There is an extensive literature on
Coxeter complexes; selé [6] for some references.

§ Some authors might apply the term “Euclidean reflection group” to the case Whéseossibly infinite but generated by affine
reflections. For this reason, one should perhaps call the finite reflection groups that we considephbénwal reflection groups
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(b)

Fig. 1: Examples ofA(G, S) which are2-tori. In (a),G = &4 andS = (12), (13), (14) (cf. [8, Figure 2]). In (b),
G is group of4 x 4 unitriangular matrices ovéf; andS is the subset of unitriangular matrices having one non-zero
superdiagonal entry and all other entries above the diagonal zero.

On the other hand, if we choos@y minimal generating sef of reflections forlV/, one can still form
A(W, S), and the fact that the determinant or sign representatiofl’ — Z* is well-defined implies
that it will be an orientable pseudomanifold by Proposifion 2.9.

Example 3.1. The first non-trivial example of the previous discussion occurs wilies= &4 the sym-
metric group ont letters, and

S = {s1 = (12),52 = (13), 53 = (14)},

where(ij) denotes the transposition which swapnd;. Since|S| = 3, we know thatA (W, S) is an
orientable surface by Propositipn 2.11. Its Euler characteristic is easily calculated a$ in (2.8) so lite
must be &-torus.

One can apply Corolla5 to visualize this torus. Consider the affine Coxeter systen{iV’, S)
whereS = {3, 42, 33} satisfy the following relations(;)> = (,5;)®> = 1forall i # j. One can
check directly that the,’s satisfy all of these same relations, along with further relations of the form
(sisjsisk)? = 1 with {i,5,k} = {1,2,3}. Thus if K is the subgroup ofi’ generated by all words of
the form(s;3,3;3;)* as above, theth (W, S) is isomorphic to the quotient of the affine Coxeter complex
A(W, S) by the action of/{. This affine Coxeter complex is a tessellation of Zhglane by equilateral
triangles, and< acts as a lattice of translations on tBiplane, leaving a quotient homeomorphic to the
2-torus, which isA (W, S), as in Figur¢ 3]1 (a).

It turns out that in this exampl& (W, S) is a simplicial complex (see Proposition 4.2 below), and that
it is isomorphic to the8 x 4 chessboard complefirst considered by Gardt [17] in the context of coset
complexes of groups, and later bydBjier, Lovasz, Vrecica and Zivaljevicl|[8] and many other authors
(see Example 4]5 below). 1nl[8, p. 30] it was also pointed out that iRisaaus.
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In Sectior] #, we discuss the case whife= &,, in more detail.

Example 3.2. The previous example raises the question of which manifolds can be achiexgdas).
The authors thank MOzaydin for pointing out the following simple construction which achieves all
orientable surfaces (orientallemanifolds) in this way. Let

G = Dun x Z)2Z
=(rst:1=r>=5=1>=(rs)?" = (rt)? = (st)?)

where D,,, denotes the dihedral group of order. We chooseS := {r,s,rt}. Since the elements of
S are involutions, and the map sending to —1 andt to +1 extends to a homomorphism 6f that
sends all elements &f to —1, we must have thah(G, S) is an orientable surface, and then a quick Euler
characteristic computation shows that it has genusl.

3.2 Unitary reflection groups.

A unitary reflection group is a finite group acting faithfully on a unitary space (a finite dimensional com-
plex vector space with positive definite Hermitian bilinear form) and generated by unitary reflections,
that is, elements of finite order which fix some hyperplane. Such groups were classified by Shephard and
Todd [28], and contain many interesting examples. There is one infinite family of such @rddps:, ),
consisting of the: x » matrices with one non-zero entry in each row and column for which all non-zero
entries aréde)*" roots of unity, and for which the product of the non-zero entriesd& aoot of unity.

Unfortunately, unitary reflection groups seem to lack distinguished sets of generators in general. How-
ever, there are at least two well-behaved subclasses of unitary reflection groups which have them

o thecomplexification®f Euclidean reflection groups (i.e. extending the action of a Euclidean reflec-
tion group acting ofiR™ to C™), and

e the Shephard groupimtroduced by Shephard [27] and studied further by Coxéter [12], which are
the automorphism groups afgular complex polytopes

For Shephard groups and their distinguished generatingséii® complexA(G, S) has many different
descriptions, including some which make no reference to the choice of the gengrageesOrlik [21]. In

this situation A(G, S) turns out to be a simplicial complex which is homotopy equivalent to a wedge of
spheres of dimensioj$| — 1, and the homology representatiéhg _, (A(G, S), Z) has many beautiful
guises, which are studied in [22].

Remark 3.3. Motivated by the Coxeter and Shephard cases, along with Cor¢llary 2.16 and Proposi-
tion , one might naively hope that g _, (A(G, S),Z) carries some&anonicalrepresentation ofr,
independent of the choice of the minimal generatrsay for some “nice” group§.

Unfortunately, even for some of the groups in the infinite fandilite, e, r) this appears to fall, e.g.
the rank ofH|g_1 (A(G, S),Z) can depend on the choice of minimal generators. For example =f
G(6,2,2), define unitary reflections

w? 0 01 0w 0 -1
SR VI I U] A PR I L S B
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wherew is any primitive sixth root of unity. Letting

S :={so, 81,82}
S/ = {S()7 S1, 3/2}7
one can easily check that bathandS’ are minimal generating sets of unitary reflectionsGrHowever
a computer calculation shows that
H?(A(Gu 5)7 Z) = ZQ
Hy(A(G, S, 7) = 72
Nevertheless, a happy situation occurs when the unitary reflection grogpgenerated by unitary
reflections of order two (involutions). Perhaps surprisingly, there are many instances where this occurs,
even when the group i®tthe complexification of some Euclidean reflection group (see e.g. the tables at
the end of[[9]). Any minimal choice of generating involutive reflectighr such a grougz will give

rise to an orientable pseudomanifad G, S) (via Propositio) since the determinant representation
is a well-defined homomorphisem: G — Z.*.

Example 3.4. Within the infinite family G(de, e, r), the groups in the subfamilg(2e, e, r) have the
aforementioned property of being generated by involutive (unitary) reflections. A close look at the case
of G = G(4,2,2) also illustrates how the Boolean compl&xXG, .S) can fail to be a simplicial complex.
Choose the following generatofs= {s, sa, s3}:

[-1 0 _fo1]. o —i
Tl |27 oo|B T o
One can check (sekl[9, Appendix 2]) that the relations among these generated by
sf =1,515352 = §35251 = S95153.
These relations have some other consequences, such as
(SiSj)4 =1fors 75]
sisjs; = sps;s, whenever(s, j, k} = {1,2,3}.

An Euler characteristic computation then shows théf, S) is an orientable surface of gentisHow-
ever,A(G, S) isnota simplicial complex, since for example, one can check that the two cagés, ..} =
5351G (5,5, ANAG Y, o,y index two vertices which are the endpoints for two different edges, indexed by
cosetss; G,y andsssi Gy, -

3.3 Unipotent groups over Fs.

Let G be the unipotent group consisting of all upper unitriangulat n matrices oveffy, and letS =
{s1,...,sn—1} Wheres, has al in the (i, 7 + 1) entry and zeroes elsewhere off the diagonal. It is easy to
check thatS is a minimal generating set fa¥ consisting of involutions. One can also check that the map
€ : s; — —1 extends to the homomorphism

G S 7Z"

n—1 .
(i) joy > (=1)2imr onin
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ThereforeA (G, S) is an orientable pseudomanifold by Proposifior] 2.9.
Biss [2] has shown that all relations among thare generated by the following Coxeter-like relations

sf =1
(sisi41)* =1 (3.1
(sisj)* = 1for |i —j| > 1,

along with the extra relation®;s; 1s:12)* = 1. Consequently Corollafy 2.115 implies thA{G, S) is a
quotient of the Coxeter compleX(1¥, §) for the Coxeter system described by the relatl- (3.1), where
one quotients by the normal subgroiipof W generated by the elemer{t§ §;,15;2)*.

Example 3.5. Taking the special case where= 4 in the previous discussion, the Coxeter complex
A(W, S) is the regular tessellation of tReplane by isosceles right triangles, akichcts as &-dimensional
lattice of translations, yielding a quotiett(G, S) which triangulates &-torus, as in Figurg 31 (b). As

in Examplg 3.]L, the fact that one obtaing-torus can be predicted independently by an easy Euler char-
acteristic computation.

Example 3.6. We give an example wher&(G, S) is non-orientable, but still comprehensible. Let

G =6,
S = {s0 = (12)(34), 51 = (23), 52 = (34)}.

One can easily check th&tminimally generate6;. By PropositioA(G, S) will be a non-orientable
surface, and an Euler characteristic computation shows that it is in fact the real projective plane.
Alternatively, one can use Corolla-15 Note thatstheatisfy the Coxeter relationg = (sps1)* =
(s0s2)? = (s152)® = 1 for the (finite) Coxeter systerfi¥’, S) of type Bs. One can check that they
also satisfy an extra relatiorsys; sgs1s25180s152 = 1. The left-hand side in this relation happens to
coincide with the image of the longest element in 1 under the surjectiod’ — G, so the kernel
K of this surjection must contain the cyclic group of order two generateddgin 1. HenceK must
coincide with this cyclic group, sincgV| = 48 = 2|G|. As W is the symmetry group of the regular
cube or octahedro\ (¥, S) is a2-sphere isomorphic to the barycentric subdivision of the boundary of
the cube or octahedron. The longest elemenhappens to act in this case as the antipodal map on the
2-sphereA(W, S), andA(G, S) is the triangulation of the real projective plane arising from the antipodal
identification.

4 The case of the symmetric group.

Here we examine more closely the case where= G,, considered as a reflection group, afids a
minimal generating set of reflections.

4.1 Trees and forests.

The following proposition is easy and well-known.

Proposition 4.1. The reflections in5,, are the transpositionsij). A setS of transpositions forms a
minimal generating set if and only if the graph on vertex[sét= {1,2,...,n} having an edgqi, j }
for each(ij) in S is a spanning tree. O
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In light of this proposition, we introduce the following bit of notation. Given a spanningfrea [n],
let Ar := A(&,,, St) whereSr is the corresponding minimal generating set.

Proposition 4.2. For any spanning tred" on [n], the pair (&,,, S) satisfies the intersection condition
(2:3), and hence\r is a simplicial complex.

Proof. Given the spanning tre€ with edge set corresponding &y, for anyJ C Sr, one hasi; =
&p, X+ x 6p,_,,, WhereBy, ..., B, |, are the blocks of the partition df] into the vertices of
the trees in the subforest @f induced by the edge subsét Similarly, for each edge in S, there is
a corresponding partition df:] into two blocksBj, B5 (the bondor cocircuitinduced bys) such that

Gs—s = 6p: x &p;. Showing the intersection condition then amounts to showing

Gle"'XGB",m: ﬂ GBfXGBg
seSr—J

or equivalently, in the lattice of partitions @f] one has

{Bla"'aBn—|J|}: /\ {Bf,B;}
seSr—J

This is easily shown by induction on— |.J|. O

The simplicial complexAr has a useful alternate description. Fix a spanning Trem [n], so that
the vertices ofl" have a fixed labeling. By kbelled subfores{F, w) of T, we mean a subforedt of
T along with an assignment of a subset ofn] to each tree irF, such that a tree havingvertices is
assigned a subset of cardinalityand these subsets disjointly partitipr). Order the labelled subforests
by saying(F, w) < (F’,w’) if the vertex set of every tree ifi is a union of vertex sets of trees i{, and
the corresponding label setsunare the unions of the label setsun.

Proposition 4.3. For any spanning tred" on [n], the face poseP (&, Sr) of At is isomorphic to the
above partial order on labelled subforestsof

Proof. A cosetwG; corresponds to a paitt, w) in which F' is the subforest of" induced by the edge
setJ. Herew indicates how to relabel the verticesBfand hence also how to label the vertex sets of the
subtrees irF. It is easy to check that this is a poset isomorphism. O

In fact, the previous description df suggests a slightly more general family of simplicial complexes
which arise naturally as type-selections®f.. Given a spanning treE on [n], let amultiplicity sequence

m = (mq,...,my) € N"

be an assignment of a non-negative integerto each vertex of 7', and call the paif7, m) a spanning
tree with vertex multiplicitiesFor any such paif7’, m), alabelled subforest a pair(F, w) where

e F'is a subforest of’,

e w is an assignment of a (possibly empty) subsgiigf wherem := ). m;, to each tree ir",
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e each tree inF' is assigned a subset of cardinality equal to the sum ofithasi runs through its
vertex set and

o these subsets disjointly partitigm].

Ordering these labelled subforests as before, it is not hard to check that this defines the face poset of
a simplicial complex which we will denotAr ,,. For example, whem = (1,1,...,1), thenAr , =
Ar.
It turns out that every compledr ,, with m; > 1 is a type-selected subcomplex of a complex
for some spanning tre€ on [m] wherem = 3. m,. Given(T,m) with m; > 1, let T be a tree onn
vertices and/ C S; a subset of edges such that

e the induced subforest ahhas subtrees withn; vertices for eachi,

o the tree obtained frorf by contracting the edges ihis 7" (in other words]" is the underlying tree
structure connecting the components of the subforest inducdd. by

With these definitions, the following proposition is a straightforward translation of the definitions.

Proposition 4.4. In the above situation,
AT,m = (AT)ST—J'

Example 4.5. Chessboard complexes.

Let 7' be ann-vertexstar, i.e. T hasn — 1 leaves each connected to the same central vertaf
degreen — 1. Forr € N, define a multiplicity sequena®,. by settingm; = 1 for each leaf vertex, and
m, = r. Then one can easily check thay ,, is isomorphic to thén — 1) x (n + r — 1) chessboard
complexA,,_1 ,+r—1 considered in[[1],18, 15, 17, 26,134.135], whose faces correspond to placements of
non-attacking rooks on am — 1) x (n — 1 4 r) chessboard.

In particular, wher{ is ann-vertex star,

Ar=Ar 1,0 =Arm, £ D10

It was noted in[[8§2] thatA,,_; ,, is a pseudomanifold with singularities lying in codimension at |8ast
(but all other chessboard complexes are not pseudomanifolds), in agreement with Prgposition 2.9.
We return to this example in the discussion of Exarmiple]4.15.

Remark 4.6.
For any pair(G, S) having only involutions inS, thefacet graphof A(G, S), having vertices indexed by
maximal faces and an edge for each pair of maximal faces that share a codimension one face, coincides
with the (undirected) Cayley grapbf G with respect to the generatofs Thus it is possible that the study
of A(G, S) and its topology may have a bearing on questions about such Cayley graphs.

In particular, wherG = &,, andT is a path, so that\ 7 is the Coxeter complex fa®,,, many questions
about this Cayley graph have been answered. For other spanning@'toeels], less is known, although
the case wher# is the star graph (so théi is the chessboard complex, ; ,, as in Examplg 4]5) was
considered in[1455], and studied more extensively [n [23].
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4.2 Deletion-contraction and flossing.

For the remainder of the paper, we examine the topologi-pf and particularly the complex represen-
tation of &,, on its homologyH, (Ar, C). For this purpose, we will make use of standard terminology
about the symmetric group and its complex representations, such as can be faurd_in [25, 32]. In what
follows, all simplicial chain groups and homology groups are taken @ittoefficients, unless explicitly
stated otherwise.

One useful feature of the settiri@, 5) = (&, S7) is that Propositioh 2.18 can be re-interpreted in
terms of certain deletion and contraction operations, for which we now introduce notation.

Given a spanning tree with multiplicitied’, m) on [r], and an edge in the tree with vertex set
e = {i,j}, one can speak of treontractionT'/e in the usual graph-theoretic sense. In other wofys,
has the same vertex set’Bexcept that, j have been coalesced into a single veitgxand the edges of
T /e correspond to the edges Bfother thare. Further definan/e by

(m/e)k = my for k& 7£ i,j
(m/e)i; = m; +m;

so that(T/e, m/e) is a spanning tree with multiplicity om — 1]. In light of Proposition) 4#A 7/ m /e
is the type-selected subcompleXr) s, e} -

When one deletes the edgérom 7" to obtain the grapl” — ¢, it splits into two connected components
T’ andT” which (up to isomorphism) are trees on vertex $etsand[n’’] respectively where’+n" = n.
Letm’ andm” be the multiplicities inm restricted to the vertex sets @f andT"” respectively, so that
(T",m’) and(T"”, m") are spanning trees with multiplicity dn’] and[n"] respectively.

In this case the exact sequence of Proposijtion| 2.18 becomes the following crucial tool.

Proposition 4.7. Given any spanning tree with multipliciti¢%’, m) on [n], and any edge of T', there is
a short exact sequence of complexe€ @, ]-modules

0— CU(AT/e,m/e) - C'(AT,m)
- (C.(AT’,m’) ® C.(AT”ymN))[]‘] g:/ XGH//H 0

O

There is a particularly useful way to combine two instances of the previous proposition for inductive
arguments (used in Subsectjon|4.3 below), which we will refer to afdbging inductionSay that a pair
of leaf vertices/, ¢’ in a treeT flossthe vertexv if v is the unique branched vertex (i.e. having dedgree
or higher) on the path frorto ¢’ in T..

Proposition 4.8. In any treeT” which is not a path, there exists a triple of vertic(ésE, v) in which 0,0
are leaves that floss the vertex

Proof. Root the tre€l’ at one of its leaves, so that each edgel’ofonnects a parent vertex to a child
vertex, the child being the one further from the root. Also erase the vertices of degreég, so as to
create a homeomorphic (rooted) tfEavith possibly fewer edges. Because neitiiaror T is a path, irll’
there will always exist two leave’s 7 other than the root which share the same parent vertard these
will correspond to a triplé?, 7, v) in T as desired. O
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Fig. 2: An example of flossing induction: two tre@s 7 related by the two short exact sequenges (41)} (4.2).

When, ¢ flossw, relabel without loss of generality so that
disty (£, v) < distp (4, v)

wheredistr(—, —) denotes graph-theoretic distancelin
Definition 4.9. Define/(T) to be the number of leaves of a trée Define

§(T) := min{distr(¢,v) : (£,4,v) such that, / flossv},

a positive quantity whenevér is not a path, and for convenience defi{&’) = 0 whenT is a path.

The flossing induction relateE to a treeT” which either has fewer vertices, or the same number of
vertices but fewer leaves, or the same number of vertices and leaves bt itk 4(T'); see Figur2
for an example. Let/, 7, v) be a triple such thaist, (¢, v) achieves the minimum(T’), and define:
to be the first edge on the path franto ¢. Then7 is formed in two steps: one first contradtsalonge
to createl’/e, with a natural multiplicity sequenas /e assigning multiplicity2 to the contracted vertex
and multiplicity 1 on all other vertices, and then one obtaih®y “un-contracting” or “stretching” this
contracted vertex into a new edgehat extends along the path towafdequivalently, one can think of
T as obtained fronT'/e by subdividing the first edge along the path from the contracted vertdx to

Note that in this process, one has tﬁaté = T/e, and hence the spanning tree with multiplicities
(T /e, m/e) fits into two short exact sequences coming from Proposdition 4.7,

0= Ce(Ar/e,mse) — Co(Ar)
= (Co(Ar) @ Co(Ap) 1S, v, — O

0= Co(A /e mye) = 7)
= (Ca(Ag) ® Co(Ap) ] 187, x5, O

(4.1)

(
)
Ga (4.2)
)
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which are illustrated schematically in Figire]4.2. Here we denot&’by’(= T") the two components
of T — e, and byl”, P(= 1"), the two components af — ¢, emphasizing the fact that the components
P, P which contair?, 7, respectively, are paths.

We will say that a proof proceedy flossing inductioiif it attempts to prove a property of the homol-
ogy of Ar as follows. The base case is whéhis a path. Wher{ is not a path, one uses induction
simultaneously on the number of verticeslinthe number of leave&T'), and on the quantity(7"): one

assumes that the property holds for any tree having either
o fewer vertices (such &', P, 7", P), or
o the same number of vertices but fewer leaves (such &g is adjacent ta in 7)), or

o the same number of vertices and leaves, but sméNedue (such ag’ if ¢ is not adjacent ta in
7),

and then uses the long exact homology sequences associated with the seflugnces [4.1) and (4.2), possibly
also taking advantage of the fact thatP are paths.
Flossing induction is used in the proofs of Theofem {.10,|4.11 afd 5.3 below.

4.3 Constraints on the homology representations.

The goal of this subsection is to prove several constraints on the irreducible representaignstath
can occur in the homology dkr or Aq .

Recall that irreducibl€[&,,]-modules are indexed by partitionsof n. Let S, denote the irreducible
indexed by\. Recall that given &[&,,]-moduleV, the notationV, S,) denotes the multiplicity oF in
V.

We first consider the occurrenceshafok representationS;,. - in the homology ofAr.

Theorem 4.10. For any spanning tred” on [n], we have
H,_o(Ar) = Spn.
For any hook shapér,1"~") andi < n — 2,
(Hi(A1), S(ran-ry) = 0.
Proof. The first assertion follows from Propositipn P.9. For the rest, we proceed in two steps.

The caser < 2. Here we argue directly about the occurrence$of;»—-) in the chain groups, and their
images under the boundary map.

Forr = 1, from the descriptior (2]2) of's (A1) and the irreducible decompositions of the coset
representations
C[Gn/(GM X X 6”7‘)]

(sometimes calle¥oung’s rulg, one sees tha;» occurs exactly once i@y (A7), in degreen — 2.
Thus it must give rise tén — 2)-dimensional homology, in agreement with Proposi 2.9.

Similarly S5 1»-2) occurs
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e exactlyn — 1 timesinC,, _o(Ar),

e exactly once in each of the summar@dg~/G.] of C,,_s(Ar), ase runs through the: — 1
edges ofr’,

e nowhere else i, (Ar).
Based on this, we claim that it would suffice to show the following: there exists

e anorderingey,es,...,e,_1 of the edges of’, and
o foreachi = 1,2,...,n — 1 acopyV; of the irreducible modul&, ;»-2y in C[&,,]

with the property that the component magfs: C[G] — C[G/G., ] satisfy

o OF(V)) =0fork >1
° 8k(Vk) #0.
This would imply, via a triangularity argument and Schur’s Lemma, thatShg--»)-isotypic

component of”,,_, maps under the boundary map isomorphically onto that,pfs, leaving no
S(2,1n-2) in the homology.

To this end, note that i has endpoint$i, j }, thenC[G/G.] is isomorphic as aff[&,,]-module to
the principal left ideaC[GnhE;,j}, where we define for any subsétc [n]

= Y w

weG 4

Vi = Z e(w) w.

wES 4

ande is the sign character. Also tkecomponentC[G] — C[G/G.] of the boundary map is (up to
a scalar multiple) the map

Cl&n] — C[Gnhaj}

X = xZ - ’}/E,]}

Order the edgesy, es, ..., e,_1 in such a way that for each the edgee; has a vertex; which
is a leaf ofT" — {ey, ea,...,e;_1}. DefineV}, to be the principal left idea@[@nhﬁk,%}V[Z]_W1
wheree, has endpoint§uvy, v, }.
It follows from the theory of Specht modules tHgt = S, ,»-2). By construction, whenevér > [
we have{vy, v} } C [n] — v, SO thaty[;]_vl'yf;km;} = 0. This implies that

k At _ + - + _ + _
0"(Vi) = Vi’y{%v};} = C[gnh{m,v;ﬂ[n]fvﬂ{vk,v;c} = (C[Gn]'y{%v{} 0=0

for k > [. It only remains to show* (V;,) # 0, for which it suffices to check that the coefficient of
the identity permutatioid in 7&7%}7@]_1%7&7%} is exactly+2, coming from the two terms in
the product
+id - 4id - +id
"r(ka;C) - 4id - +(vkv§€).
This completes the case= 2.



Coxeter-like complexes 241

The caser > 3. We will argue that{(H,(Ar), S, 1»-r) = 0 for » > 3 via the flossing induction, ex-
plained in Subsectidn 4.2.

First note that ifV; for ¢ € {1,2} areC[&,,,|-modules withn; > 1 andn; + n, = n having the

i

property thal(‘fi,S(r71n,i_r)> = 0 forr > 2, then theLittlewood-Richardson rulshows that
(M ®Va) 187 «e,,»Sirin—r) = 0forr > 3.

(In fact, we will only need this in the special case of the Littlewood-Richardson rule known as
Pieri’s formula, whereVs is the sign representatia -. ; this is due to the fact tha®, P are paths,

and hence have only the sign representation occurring in the homology of the Coxeter complexes
Ap,Ap).

SinceT”, P,T", P all have fewer vertices thaH, induction applies to them, and then théreth
formula along with the previous fact shows that the homology of the third term in both short exact
sequences (4.1) and (#.2) contains no occurrenc®,gf.—- for » > 3. On the other hand, induc-

tion also applies td", because it has its shortest distance from a leaf to a branched vertex shorter
than inT" or else the distance wasand1’ has fewer leaves thaf. So the homology of the middle

term in [4.2) has no occurrences&f. 1~ for » > 2. This implies by the long exact sequence

in homology that the homology of the first term [n (4.2) contains no occurrenc8g. gf - for

r > 3. But sinceff/é = T'/e implies that this is the same as the homology of the first terfn i (4.1),
we can conclude that the homology of the middle ternjin|(4.1) has this same property, as desired.

O

A similar flossing induction argument gives a bound on the length of the longest ravioofany S,
which occurs in the homology akr.

Theorem 4.11. For any spanning tred on [n] with £(T) leaves, and any partition of n
(Ho(A7),Sx) =0 unless \; > ¢(T) — 1.

Proof. We use flossing induction, as in the last proof, taking advantage of the facPtiaare paths,
so that their homology only contains the irreducible representations, S~ respectively. Note that
Pieri’s formulaimplies that for any partitiom of »” and\ a partition ofn, one has

((Su @ 81ur) 18", x5, Sn) = 01f Ay > iy + 1.

The other crucial facts are that

U1y = 0T) -1
o1y =4(T) -1
oT) < T).

O

We conjecture that the number of leav€¥)) also gives rise to a (loose) lower bound on the connectivity
of A1 . Recall that a topological spadéis said to be:-connectedf its homotopy groupsr; (X) vanish
fori < k.
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Conjecture 4.12. For any spanning tree with multiplicitied’, m) on [n] with ¢(T") leaves, the complex
Apmis(n—1—¢(T))-connected.

This conjecture is well-known and tight fé(T") = 2; see Examplg 4.14 below. It also turns out to
hold whenm = (1,1,...,1) for £(T) = 3 (see Appendix]7), and is tight in this case by Theoferh 5.3.
However, see the discussion of chessboard complexes in Examp]e 4.15 below as an illustration of the
looseness of this conjectural connectivity bound in general.

Some recent ideas of P. Hers§h|[19] regarding a notioneztk orderingon (n — ¢(T'))-faces ofAr m
may lead to a stronger assertion than Conjedture 4.12, namely that thé(T"))-skeleton is shellable.
Similar results were proven by Zieglér [34], Shareshian and Welchs, [26], and Athanasiadis [1], for chess-
board and matching complexes.

Lastly we mention a somewhat trivial constraint on the homology representatiaks @f which ig-
nores the tree structufE. Given two partitions\ and . of the same number, say thatdominatesu,
written A > g, if S A > 32y, for all k.

Proposition 4.13. Assumen; > --- > m,, by re-indexing, if necessary.
Then(He(Arm),Sx) # 0 impliesA > m.

Proof. The same constraint turns out to hold on the chain level. One check§'$hAt ,,,) is a direct
sum ofC[&,,,]-modules of the forn€[S,,, /(&,,,; x - - - x &, )] wherem' = (mf, ..., m;,) is obtained
from m by merging parts, and therefora’ > m. On the other hand, it is well-known from Young'’s rule
that

(Cl&m/(6m

’
1

XX Gy )], S0) #0

implies A\ >m’. HenceA > m’ > m. O

4.4 Some examples.

Example 4.14. Rank-selections of Boolean algebras

In the case wheli(T") = 2, so thatT is a path withn vertices, the compledr , is a type-selected
subcomplex of the Coxeter complex f6r,, wherem = ) . m;. Equivalently, it is the order complex
for a rank-selection of the Boolean algeBf&!. Specifically, if the vertices along the pathare labelled
1,2,...,nin order, themAr ,, corresponds to selectiy™ at the rank

Dm = {ml,m1+m2,...77n1 +m2+"'+mn—l}'

The Coxeter complex ishellable a property which is automatically inherited by all of its type-selected
subcomplexes (see e.al [3,1]). Hence in this casAr ,, is homotopy equivalent to a wedge (@f — 2)-
spheres, which isn — 3)-connected, in agreement with Conjec.12.

The homology is also well-known as 816&,,,]-module (se€ [33, Theorem 4.3]): the multiplicity &
in H,_s(Arm) is the number of standard Young tableaux of shapenosedescent set exactlyD,y,.

We should point out that this entire discussion is known to generalize to Coxeter complexes associated
to an arbitrary finite Coxeter syste(#, S); see [6, Remark 6.7]. The Coxeter complaxW, S) and
all of its type-selectiong\ (W, S) ; are shellable, and their associated homology representations can be
expressed in terms of théazhdan-Lusztig cell representatioosrresponding teeft cellshaving a fixed
descent sefusing an appropriate definition of descents for Coxeter group elements).
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Example 4.15. Chesshoard complexes revisited.

Recall from Examplg 4]5 that whéhis ann-vertex star anan assigns- to the central vertex andlto
the remaining vertices\r , is the chessboard compléx,,_1 ,,—1. In [8] it was shown that\,,, ,, is
v — 2-connected, where we assume< n and

( {m—i—n—&-lJ)
v =min | m, f .

It was also conjectured there (and recently proven by Shareshian and Wachs [26]) that this connectivity
bound is tight. This shows that the above conjecture on the connectivity;gf, for T a star andm

as above is very far from tight: these known results show that in this chessboard\gageis roughly
%g#-connected, while Conjectu12 would only assert thatltdennected (i.e. connected) .

The chessboard examples also illustrate how far the homology with complex coefficients can deviate
from the integral homology foAr ,,. The homology with complex coefficients o, ,, was described
completely by Friedman and Hanldn [15], even &8[&,,, x &,]-module. For example, " is a star,
then using their results fak,,_, ,, one can deduce thai; (Ar, C) will start to vanish fori roughly below
dimensionn — +/n, while the results of[[8, 26] show that thé; (A7, Z) will only start to vanish for;
roughly below dimensiof:.

5 The case of a single branch vertex.

In this section, we examine more closely the simplicial compléxggand more generally\r ,,,) intro-
duced in the previous section, in the case wieis a tree having at most oftanchvertex, i.e. at most
one vertex of degregor higher. Note that this class encompasses both Exainplgs 4.[4 ahd 4.15.

5.1 A general lower bound.

We begin with a companion lower bound for the upper boundogiven in Theorerf 4.31. Note that this
bound is sensitive to the dimension in which the homology occurs.

Theorem 5.1. AssumeT is a spanning tree ote] having at most one branch vertex and thatm
achieves its maximum valuesat,. Then

<HZ‘(AT’m),S,\> =0 if M <my+n—2—i.

Remark 5.2. The assumptions thdt has only one branch vertexand thatm,, achieves the maximum
value inm turn out to be necessary here. The spanningfree [n] = [8] with edge set

{12,13,14, 45,56, 67, 68}

has more than one branch vertex, and computer calculations sholifth{@r), S22 2,2)) = 1, violating
the above inequality. The spanning tfBeon [n] = [5] having edge sef12, 23, 34,35} has one branch
vertexv = 3, and if we takem = (2,1,1,1,1) so thatms = 1 is not the maximum value im, then
computer calculations shoW> (A7 m), S2,2,2)) = 1, violating the above inequality.

Note also that the hypotheses of the theorem are satisfied by the(Pairs) for which Ar ., is a
chessboard complex (see Exanjplg 4.5).
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Proof. We use induction on the number of edgedimnd utilize Propositiof 417, choosirgo be any
edge of7" incident to the branch vertex Note that since\; < m, +n —2 —iand(m/e), > m, + 1,

we have\; < (m/e), + (n — 1) — 2 — 4. Therefore induction applies to Shai; (A7 /e m/e), Sx) =0

so S, does not occur in thé-dimensional homology of the first term of the short exact sequence of
Propositiorf 4.]7.

We wish to show tha&, also does not occur in thiedimensional homology of the third term of this
short exact sequence, so that the desired vanishing would follow from the associated long exact sequence
in homology. Without loss of generality, we may assume #ais the subtree containing so that7”
is a path. Induction applies &', so that(H; (Aq ), S,) # 0 impliesy; > m, +n' —2 — 7.

Also note that Example 4.14 implieS(7") only has homology in dimension” — 2. Therefore by the
Kinneth formulaS, can only occur in thé-dimensional homology of the third term if it occurs in the
decomposition of some tensor prodét ® S, into irreducibles where' + n” =n, p/ = n’, 1/ = n”
and one hag} > m, +n’ — 2 — i’ for somei’ satisfyingi’ + (n” — 2) = i — 2. On the other hand, the
Littlewood-Richardson rule for decomposing this tensor product easily impliesthaty]. Putting all
of these inequalities and equalities together gives m,, + n — 2 — 4, a contradiction. O

5.2 The case of three leaves.

The case/(T) = 2 was discussed in Example 4114, and using some of our results constraining the
homology, we can now deal with the case wh&fE) = 3 with all multiplicities1,i.e.m = (1,1,...,1).
Let T, . be the spanning tree dn| for n = a + b + ¢ + 1 which has a central vertaxof degree3, and
three “arms” consisting af, b andc other vertices respectively. We assume without loss of generality that
a>b>c>1.
We introduce the following convenience for describing the homology representatidisg, of . For
two pairs(p, q), (r, s) of positive integers satisfying+ ¢ = r + s = n andp > max(r, s) > min(r, s) >
q, define a (virtual)C[&,,]-module by the equation

Vip.a),(r,s) ® (81” ® S1a Tg:qu) =S @ Sie Tgrx6s

which actually turns out to define a genuine (not virtual) representation

min(r,s)

Vipa).(rs) = @ S(ar 1n-2k). (5.1)
k=q+1

Theorem 5.3. Leta > b > c>1andn = a+ b+ c+ 1. ThenAr, ,  has all of its (reduced) integral
homology concentrated in dimensians- 2 andn — 3, and no torsion.
Furthermore, the homology witl coefficients has the following description as@f&,,]-module:
Sl” if i=n—2
@Cl,CQZl, c1+ca=c+1 ‘/v(ﬂ+b+C11€2)7(b+627a+01) if i=mn-— 3

Hi(Ar,,.) = {

Remark 5.4. Note that using this theorem, one could easily write down a formula which is piecewise-
linear ink for the multiplicities

C = <Hn—3<ATa,b,c)7 S(2k71n—2k)>.
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However the presence of thein(r, s) in the formula [(5.1) forV, 4 () would make this somewhat
clumsy.

Remark 5.5. Note also that the theorem is consistent with the constraints from Theprerhg 4.10, 4.11 and
[6.1. In fact, these results would suffice to imply all of the assertions about vanishing homology in the
theorem, except for the lack of torsion.

Proof. SinceAr, , . has dimensiom —2, Theorenj 7.3 below implies the result about homology concen-
tration. It also implies that there is no torsionfih(Ar, , ., Z): the only non-vanishing homology groups
are the top two, and Proposm@ 9 implies that , _ is an orientable pseudomanifold, which never has
torsion in its top two homology groups (see elqg. [29 p. 206, Exerc. 4.E.2]).

We know from Propositiop 29 that the assertion of the theorem fom — 2 is correct, and that this
top homology gives the only occurrence&f.. Thus only the homology in the single dimension- 3 is
unknown, and there can be no two occurrences of the same irreducible module in two different homology
groups. It therefore suffices to compute {fv@tual-)C[S,,|-module Euler characteristi¢or Lefschetz
characte) which is the formal sum of modules

((Tune) = Y (<D HAAL, , ). S1) Sa

For this we again use the two exact sequerice$ (4.1 arjd (4.2), choosing theoadge= 7, ;. to be
the edge containing the central vertexand lying on the arm havingvertices, and choosing the edge
onT := To+1,6,c—1 to be the edge containingwhich lies on the arm having+ 1 vertices (Note: this is
again an example of the flossing induction). betandm be the multiplicity sequences of all onesdn
and7’ respectively so thatl’, m)/e = (T', 1) /é. If we let P, denote a path havingvertices, these two
exact sequences become:

0— CO(AT/e m/e) — C, (ATa,b,c)
- (CO(AP ) ® C, (AP +b+1))[1] Tg:x6a+b+1_>

(5.2)
0— C’(AT/é m/é) - C‘(ATa+1 be— 1)

(C (APa+1) ® C’(Apb+c+1))[ ] T6a+1><617+c+1—> O

Since Euler characteristics are additive on short exact sequences and multiplicative on tensor products,
one concludes that

X(Ta,b,c) = X(T/ev m/e) - X(AP ) ® X(AP +b+l)
X(Ta+1,b,c71> = X(T/év m/é) - X(APQJA) ® X(APb+c+1)'
where the symbols on the right-hand side should be interpreted as the induction product on virtual

characters. SincAp, is the Coxeter complex fa®,. whose homology vanishes except & in the top
dimension, one concludes that

X(Tape) = X(Tat1,p,e-1)

S
= Sivte @ Sta+1 TG:+G><6 —Siatb+1 @ Spe TG

at+1 at+b+1 XS,

= _Wa+b+1,c) ,(b+c,a+1)
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By induction onc, and using the fact th&ft, , o = P,1+1 for the base case, one obtains

c1,c2>1,c1+ca=c+1

XTa,b,c = (_1>7L—2 (81” - Z ‘/Y(a+b+C1,C2),(b+C2,a+C1))

as desired. O

6 Remarks and questions.

We begin by asking: What is the correct (tight) version of Conjegturg 4.12? Can one prove such a result
via shellability or vertex-decomposabilityf some skeleton oAt y,, as in [1/34]?

A different question deals with how the two extremes of trees from Exarpples 4[5 and 4.14 bound the
homology of A7 for an arbitrary spanning treg on [n]. Let P,, denote the path with vertices, and
Star,, the star graph on vertices. Since for any treg, the complexAr is an orientable pseudomanifold
carrying the sign representation®f, on its top homology (Propositign 2.9), the homology of the Coxeter
complex forG,, (that is, Ap,) trivially gives a lower bound for the multiplicities of irreducibl®,,-
representations in any homology grofip(Ar, C). We speculate that the chessboard compex ; ,,
(that isAstar, ) provides a companion upper bound:

Question 6.1.1s it true that for every irreducibl&,,-representatiossy, and every spanning tré&on [n],
one has
(Hi(Ap,,C),Sx) < (Hi(Ar,C),Sy) < (Hi(Astar,,C),S1)7

One can check using Theor¢m|5.3 and the results of [15] that the answer is affirmativé iiasnat
most3 leaves, but we have not checked it extensively in other cases. One could also ask more generally
whether there exists a partial orderirgon all spanning trees o], roughly from “less branched” to
“more branched”, so that paths are at the bottom and stars are at the top, with the prop@rtythat
implies
(H;(Ar,C),8)\) < (Hi(Ar/,C),S)).

Lastly, we remark that chessboard complexes have the unexpected property that the combinatorial
Laplacians defined from their simplicial boundary maps have only integer sgedtra [15], but unfortunately,
the same property is not shared Ay in general. This fails, in fact, even whéhis a pathP,, for n > 4.

7 Appendix: A special case of the connectivity Conjecture [4.12|

Our goal here is to use nerve-type arguments aslin [8] to prove Th¢orgm 7.3 below. This result confirms
Conjecturd 4.72 in a very special case needed for the assertions about torsion-free homology in Theo-
rem[5.3: the case whef has3 leaves, and the multiplicity sequenane assignsl to all vertices except
possibly for the unique vertexof degrees. It is due to the different flavor of the arguments in this proof,
and our hope that the conjecture (or a tighter connectivity bound) will eventually be proven, that we have
relegated this discussion to an appendix.

LetAy, . denote the comple’Ar ,, whenT has

o UT) =k,
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e acentral vertex of degreek,

e k armsconsisting ofa; other vertices each,

e n:=1+ > a; vertices total,

e m assigning multiplicityl to all vertices except,
® My =T.

For exampleA} , . is what was previously calledr, , .. We also allow for the possibility that < 0,

a,b,c
even though this was not originally allowed in the definition’of ,; one can check thak; ~, isa
well-defined, non-empty simplicial complex as longas=r+ ), a; > 0. Our goal will be to describe
the homotopy type oA}, .. for r an arbitrary integer, and the connectivitydf, ,, .. forr > 1.
We begin withA7 ... Of course, here the tréE is unbranched, and hence Exaniple }1.14 applies as
long asr > 1. But since we are allowing to be an arbitrary integer, more needs to be said to determine

the homotopy type oA” in general.

a1,a2

Lemma7.1. Fora; > ap; > 0andr € Z, let

m=a;+ag+r

n=a;+as+ 1.

Then the homotopy or homeomorphism typaAbf . is as follows.
For» > 1, one has that\] , is a type-selected subcomplex of the Coxeter complex of4ype,
and hence homotopy equivalent to a wedgéwof 2)-spheres.

Otherwise A is

ai,az

a homotopy(m — 2)-sphere 0 < —r < ay

contractible ifas < —r <aq
atypeA,, Coxeter complex ii; < —r<n
empty ifn < —r.

Proof. The assertions for > 1 and forn < —r follow from the previous discussion.

Forr in the range) < —r < az, we use a nerve argument. Covsf, .. by the stars of the vertices
fori =1,2,...,m, wherev; corresponds to the labelled subforest of the path @ertices which has a
singleton on the end-vertex of the-vertex branch labelled by the singleton subgétand the remaining
path ofn — 1 vertices labelled by the sgt] — {i}. Itis easy to check that this indeed covey, ,,, using
the fact thatz; +r > 1. One can also check that for ahy: m, the intersection of the starsof , . . ., v;,
will have a cone vertex. Specifically, this cone vertex corresponds to the labelled subforestwitif
t < a; ands =t — r + 1 otherwise, partitioning the path into thevertices furthest toward the -vertex
branch, labelled by the séty, ..., }, and then — s remaining vertices, labelled by the complementary
set[m] — {i1, ..., i }. Onthe other hand, far= m, this labelled subforest is no longer a vertex as it does
not partition the path into two sets (the second set has cardinality+» —1 = n—m+r—1 = 0), and
in fact the intersection of all of the stars of theis the empty face. Hence by the usual nerve lemma (see
[38} (10.7)], or the limiting casé = ~o in the Lemm@z below)\” is homotopy equivalent to the

ay,a2

nerve of this covering, which is the boundary of(an — 1)-dimensional simplex, so amn — 2)-sphere.
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The same nerve argument works fomn the rangeus; < —r < ap. The only difference is that now
fort = m < a; the intersection will no longer be the empty face, and will again have a cone vertex
corresponding to the labelled subforest described as the first case in previous paragraph. Hence the usual
nerve lemma implies thaky, . is contractible in this situation.

If a; < —r <n=a;+as+ 1, we repeatedly use the following isomorphism of simplicial complexes:

AT =2 AT a4 <0, (7.1)

ai,a2 ayp,a—

This isomorphism[(7]1) is a special case of the inclusion in the cofibration sequence of Rernark 4.7, in
whiche is one of the two edges incident to the vertexamely the edge pointing toward the branch having
as vertices. Here the inclusion is also surjective (and hence an isomorphism) because the assumption that
a1 +r < 0implies every non-trivial labelled subforest must ega one of its subtrees. We obtain
Al E A = A0

by applying the isomorphisr (7.1) first(r+a1 ) times to lower the: in the subscript, and then(r+az)
times to lower theu; in the subscript.

It only remains to describe an isomorphism fraxy,";, to the Coxeter complex of typd,,. Given a
typical labelled subforest corresponding to a face\qf’;,, its subtrees are labelled by sets which give
an ordered decomposition ¢f:], i.e. a sequence of sef3y, ..., B, with [m] = II;B;, where it is
possible that the se8;, labeling the unique subtree containing verteis the empty set. Replacing;,
by B;, U {m + 1} gives an ordered decomposition[ef + 1] into non-empty sets, which labels a typical
face in the Coxeter complex of typg,,. One can easily check that this is the desired isomorphisml

For the case oAA”

a1,az,as’

we use a connectivity nerve lemma fram [8].

Lemma 7.2. [Bl Lemma 1.2] LetA be a simplicial complex covered by a famflsh;}7_,. Suppose that
every non-empty intersectiqS?p;=1 A;; is (k —t + 1)-connected fot > 1. ThenA is k-connected if and

only if the nerve of the covering\; };_, is k-connected. O
Theorem 7.3. Givenay, as, a3 > 0, letn = a1 + as + az + 1.

If r > 1, the complexd\;, ,, .. is (n — 4)-connected. In particulag\r, , . is (n — 4)-connected.
Remark 7.4. Note that this agrees with Conject{ire 4.12 in this case, ifitg= 3 here.
Remark 7.5. Although A7 ... is a well-defined simplicial complex even femegative, some lower

bound onr is necessary for the conclusion of the theorem. For example, the comp@ds isomorphic
to thel x 3 chessboard complex, and has- 4, but is disconnected, i.e. nétconnected.

Proof. We use a nerve argument as in the proof of the previous theorem, but applying [Llemhma 7.2. Cover
A7, 4,.qs DY the stars of the vertices fori = 1,2,. .., m, wherev; corresponds to the labelled subforest

which has a singleton on the end-vertex of thevertex branch labelled by the singleton subggtand
the remaining tree of — 1 vertices labelled by the sgi] — {i}. As before, these stars do indeed cover

AL, 4,.050 USING the fact that, + 7 > 1. Also as before, one can check that for @any min(a;,m — 1),
the intersection of the stars of,, .. ., v;, will have a cone vertex with a similar description to the one in

the previous proof: the branch with vertices has an end subtree labelled by the&et . ., i; }, and the
remaining vertices form a subtree labelled by the complementafy$et {i1, ..., 4:}.
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For t in the rangea; < ¢ < m, one can check that the intersection of the stars;pf...,v;, is
isomorphic toAZ;g;—t. By checking various cases using Lem@ 7.1, one concludes{km—t is
always at leastn — 3 — t)-connected fot in this range.

Finally, if t = m, this intersection of stars is the empty face. This means that the nerve of this covering is
the boundary of afm — 1)-simplex, and hencén — 3)-connected. Since > 1 impliesm —3 > n — 3,
the nerve is(n — 3)-connected, and we can apply Lem@] 7.2 to concludeMat,, . is (n — 3)-

connected. O
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