On Linear Layouts of Graphs

Abstract : In a total order of the vertices of a graph, two edges with no endpoint in common can be \emphcrossing, \emphnested, or \emphdisjoint. A \emphk-stack (respectively, \emphk-queue, \emphk-arch) \emphlayout of a graph consists of a total order of the vertices, and a partition of the edges into k sets of pairwise non-crossing (non-nested, non-disjoint) edges. Motivated by numerous applications, stack layouts (also called \emphbook embeddings) and queue layouts are widely studied in the literature, while this is the first paper to investigate arch layouts.\par Our main result is a characterisation of k-arch graphs as the \emphalmost (k+1)-colourable graphs; that is, the graphs G with a set S of at most k vertices, such that G S is (k+1)-colourable.\par In addition, we survey the following fundamental questions regarding each type of layout, and in the case of queue layouts, provide simple proofs of a number of existing results. How does one partition the edges given a fixed ordering of the vertices? What is the maximum number of edges in each type of layout? What is the maximum chromatic number of a graph admitting each type of layout? What is the computational complexity of recognising the graphs that admit each type of layout?\par A comprehensive bibliography of all known references on these topics is included. \par
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2004, 6 (2), pp.339-358
Liste complète des métadonnées

Littérature citée [108 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00959012
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 13 mars 2014 - 17:06:03
Dernière modification le : samedi 3 mars 2018 - 01:04:58
Document(s) archivé(s) le : vendredi 13 juin 2014 - 12:12:02

Fichier

dm060210.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00959012, version 1

Collections

Citation

Vida Dujmović, David R. Wood. On Linear Layouts of Graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2004, 6 (2), pp.339-358. 〈hal-00959012〉

Partager

Métriques

Consultations de la notice

116

Téléchargements de fichiers

282