D. Aldous, The Continuum random tree II: an overview, Stochastic analysis, pp.23-70, 1990.
DOI : 10.1017/CBO9780511662980.003

J. David, J. Aldous, and . Pitman, Brownian bridge asymptotics for random mappings, Random Structures Algorithms, vol.5, issue.4, pp.487-512, 1994.

. Ph, M. Biane, and . Yor, Valeurs principales associées aux temps locaux browniens, Bull. Sci. Math, vol.111, issue.21, pp.23-101, 1987.

P. Billingsley, Convergence of probability measures, 1968.
DOI : 10.1002/9780470316962

P. Billingsley, Probability and measure. Wiley Series in Probability and Mathematical Statistics, 1995.

P. Chassaing, J. F. Marckert, and M. Yor, The height and width of simple trees, Mathematics and computer science Trends Math, pp.17-30, 2000.
DOI : 10.1007/978-3-0348-8405-1_2

P. Chassaing and J. Marckert, Parking functions, empirical processes, and the width of rooted labeled trees, Electron. J. Combin, vol.8, issue.19, p.pp, 2001.

J. W. Cohen and G. Hooghiemstra, /1 Queue and Their Occupation Times, Mathematics of Operations Research, vol.6, issue.4, pp.608-629, 1981.
DOI : 10.1287/moor.6.4.608

M. Drmota, The height distribution of leaves in rooted trees, Discrete Mathematics and Applications, vol.4, issue.1, pp.67-82, 1994.
DOI : 10.1515/dma.1994.4.1.45

M. Drmota, Correlations on the strata of a random mapping, Random Structures & Algorithms, vol.18, issue.2-3, pp.357-365, 1995.
DOI : 10.1002/rsa.3240060223

M. Drmota, On nodes of given degree in random trees, Probabilistic methods in discrete mathematics, pp.31-44, 1996.

M. Drmota, Systems of functional equations. Random Structures Algorithms, pp.103-124, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01197227

M. Drmota, Stochastic analysis of tree-like data structures, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.460, issue.2041, pp.271-307, 2004.
DOI : 10.1098/rspa.2003.1243

M. Drmota and B. Gittenberger, On the profile of random trees. Random Structures Algorithms, pp.421-451, 1997.

M. Drmota and B. Gittenberger, Strata of random mappings?a combinatorial approach. Stochastic Process, Appl, vol.82, issue.2, pp.157-171, 1999.

M. Drmota and J. Marckert, Reinforced weak convergence of stochastic processes, Statistics & Probability Letters, vol.71, issue.3
DOI : 10.1016/j.spl.2004.11.005

R. T. Durrett, D. L. Iglehart, and D. R. Miller, Weak Convergence to Brownian Meander and Brownian Excursion, The Annals of Probability, vol.5, issue.1, pp.117-129, 1977.
DOI : 10.1214/aop/1176995895

P. Flajolet and A. Odlyzko, The average height of binary trees and other simple trees, Journal of Computer and System Sciences, vol.25, issue.2, pp.171-213, 1982.
DOI : 10.1016/0022-0000(82)90004-6

URL : https://hal.archives-ouvertes.fr/inria-00076505

P. Flajolet and A. Odlyzko, Singularity Analysis of Generating Functions, SIAM Journal on Discrete Mathematics, vol.3, issue.2, pp.216-240, 1990.
DOI : 10.1137/0403019

URL : https://hal.archives-ouvertes.fr/inria-00075725

P. Flajolet and A. M. Odlyzko, Random Mapping Statistics, Advances in cryptology? EUROCRYPT '89, pp.329-354, 1989.
DOI : 10.1007/3-540-46885-4_34

URL : https://hal.archives-ouvertes.fr/inria-00075445

R. K. Getoor and M. J. Sharpe, Excursions of Brownian motion and bessel processes, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.14, issue.1, pp.83-106, 1979.
DOI : 10.1007/BF00533253

B. Gittenberger, On the Contour of Random Trees, SIAM Journal on Discrete Mathematics, vol.12, issue.4, pp.434-458, 1999.
DOI : 10.1137/S0895480195289928

B. Gittenberger, On the Profile of Random Forests, Mathematics and computer science, II (Versailles Trends Math, pp.279-293, 2002.
DOI : 10.1007/978-3-0348-8211-8_17

B. Gittenberger and G. Louchard, The Brownian excursion multi-dimensional local time density, Journal of Applied Probability, vol.426, issue.02, pp.350-373, 1999.
DOI : 10.1016/0304-3975(92)90330-I

W. Gutjahr, G. Ch, and . Pflug, The asymptotic contour process of a binary tree is a Brownian excursion, Stochastic Processes and their Applications, vol.41, issue.1, pp.69-89, 1992.
DOI : 10.1016/0304-4149(92)90147-I

G. Hooghiemstra, On the explicit form of the density of Brownian excursion local time, Proc. Amer, pp.127-130, 1982.
DOI : 10.1090/S0002-9939-1982-0633293-5

P. Douglas and . Kennedy, The distribution of the maximum Brownian excursion, J. Appl. Probability, vol.13, issue.2, pp.371-376, 1976.

G. Kersting, On the height profile of a conditioned galton-watson tree, 1998.

P. Kirschenhofer, On the height of leaves in binary trees, J. Combin. Inform. System Sci, vol.8, issue.1, pp.44-60, 1983.

P. Kirschenhofer, Some new results on the average height of binary trees, Ars Combin, vol.16, issue.A, pp.255-260, 1983.

F. Valentin and . Kolchin, Random mappings. Translation Series in Mathematics and Engineering, 1986.

J. Komlós, P. Major, and G. Tusnády, An approximation of partial sums of independent RV's, and the sample DF. II, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.3, issue.1, pp.33-58, 1976.
DOI : 10.1007/BF00532688

G. Louchard, Kac's formula, levy's local time and brownian excursion, Journal of Applied Probability, vol.1, issue.03, pp.479-499, 1984.
DOI : 10.1214/aop/1176993927

A. Meir and J. W. Moon, On the altitude of nodes in random trees. Canad, J. Math, vol.30, issue.5, pp.997-1015, 1978.

R. Ljuben and . Mutafchiev, The limit distribution of the number of nodes in low strata of a random mapping, Statist. Probab. Lett, vol.7, issue.3, pp.247-251, 1988.

M. Andrew, H. S. Odlyzko, and . Wilf, Bandwidths and profiles of trees, J. Combin. Theory Ser. B, vol.42, issue.3, pp.348-370, 1987.

J. Pitman, The SDE Solved By Local Times of a Brownian Excursion or Bridge Derived From the Height Profile of a Random Tree or Forest, The Annals of Probability, vol.27, issue.1, pp.261-283, 1999.
DOI : 10.1214/aop/1022677262

G. V. Proskurin, On the Distribution of the Number of Vertices in Strata of a Random Mapping, Theory of Probability & Its Applications, vol.18, issue.4, pp.846-852, 1973.
DOI : 10.1137/1118106

L. Takács, Limit distributions for queues and random rooted trees, Journal of Applied Mathematics and Stochastic Analysis, vol.6, issue.3, pp.189-216, 1993.
DOI : 10.1155/S1048953393000176

L. Takács, Brownian local times, Journal of Applied Mathematics and Stochastic Analysis, vol.8, issue.3, pp.209-232, 1995.
DOI : 10.1155/S1048953395000207