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A sequence(ai) of integers iswell-spreadif the sumsai +a j , for i < j, are all different. For a fixed positive integer
r, letWr (N) denote the maximum integern for which there exists a well-spread sequence 0≤ a1 < · · · < an ≤ N with
ai ≡ a j (mod r) for all i, j. We give a new proof thatWr (N) < (N/r)1/2 + O((N/r)1/4); our approach improves
a bound of Ruzsa [Acta. Arith. 65 (1993), 259–283] by decreasing the implicit constant, essentially from 4 to

√
3.

We apply this result to verify a conjecture of Jones et al. from [Discuss. Math. Graph Theory23 (2003), 287–307].
The application concerns the growth-rate of the maximum labelΛ(n) in a ‘most-efficient’ metric, injective edge-
labelling of Kn with the property that every Hamilton cycle has the same length; we prove that 2n2 −O(n3/2) <
Λ(n) < 2n2 +O(n61/40).

Keywords: Well-spread, weak Sidon, graph labelling, Hamilton cycle

1 Introduction
Ostensibly our purpose is to prove a conjecture from [JKMW03] concerning the growth-rate of the maxi-
mum label in a certain edge-labelling ofKn. The essential ingredient in the proof, Theorem 4, determines
asymptotically the maximum ‘density’ of a finite, well-spread sequence of nonnegative integers. This
result was first proved (explicitly) by Ruzsa [Ruz93]; our proof improves upon his bound and as such may
be of independent interest.

Sets and sequences
We writeZ

+ andN, respectively, for the sets of positive and nonnegative integers. Kotzig [Kot72] called
a sequence(ai) of integerswell-spreadif the sumsai +a j , for i < j, are all different;weak Sidonis used
synonymously, e.g., in [Ruz93]. He studied finite, well-spread sequences in part due to their relationship
with ‘magic valuations’—now called ‘edge-magic total labellings’—of graphs; see [PW99] for further
details. If we strengthen the condition and require that all the sumsai + a j , for i ≤ j, be distinct, then
(ai) is called aSidon sequence. In connection with his studies in Fourier theory, Sidon [Sid32, Sid35]
considered these sequences under the nameB2-sequence; see [HR83] for a basic reference. Every Sidon
sequence is well-spread, but it is easy to construct examples to show that the converse is false: e.g.,
(1,2,3). We shall fix a modulusr ∈ Z

+ and considerconstant-residueintegral sequences(ai), i.e., ones
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for whichai ≡ a j (mod r) for all i, j; our application depends on the caser = 2, viz., theconstant-parity
sequences.

Our main number-theoretic contribution (Theorem 4) concerns the asymptotic behaviour of the follow-
ing functions fromN ontoZ

+:

W(N) := max{n : there is a well-spread sequence 0≤ a1 < · · · < an ≤ N};

Wr(N) := max{n : there is a constant-residue, well-spread sequence 0≤ a1 < · · · < an ≤ N}.

We useS, Sr , respectively, for the functions defined by replacing ‘well-spread’ by ‘Sidon’ in these defini-
tions. Several basic inequalities follow at once:

Sr(N) ≤Wr(N),S(N) ≤W(N) for eachN ∈ N. (1)

Since the well-spread and Sidon properties are invariant under (integral) affine transformations, the max-
imum length of either type of sequence contained in an(N +1)-term arithmetic progression is the same
as among an initial segment ofN+1 nonnegative integers. Thus,

Sr(N) = S

(⌊

N
r

⌋)

and Wr(N) = W

(⌊

N
r

⌋)

. (2)

Though we need onlyW2 for our graph labelling application, we shall state our number-theoretic results
in terms ofWr since we prefer to display explicitly the dependence on the modulusr.

Graphs and labellings
Since we employ standard graph-theoretic notation, we refer the reader to any basic text—e.g. [Wes01]—
for omitted definitions. We use[n] :={1, . . . ,n} for the vertex set of a complete graphKn. If A is an edge
with endsi, j, then we writeA = i j . An edge-labellingof Kn is a functionλ : E(Kn) → Z

+. We say thatλ
hasconstant Hamilton-weightwhenever the value of∑A∈E(H) λ(A) is independent of the Hamilton cycle
H, and ismetric if it satisfies the triangle-inequality:λ(ik) ≤ λ(i j )+λ( jk) for every triplei, j,k∈ [n].

Our main graph-theoretic contribution (Theorem 6) verifies a conjecture from [JKMW03] by determin-
ing the asymptotic growth-rate of the following function fromZ+ into Z

+:

Λ(n) := min
λ

max
A∈E(Kn)

λ(A),

the minimum being taken over all metric, injective edge-labellingsλ of Kn having constant Hamilton-
weight.

Background
Let us begin with a celebrated result of Erdős and others on the ‘density’ of finite Sidon sequences. Here
and throughout this paper, all asymptotic assertions are contingent on the relevant parameter (N or n)
tending to infinity.

Theorem 1 S(N) ∼ N1/2; i.e.,
(

1−o(1)
)

N1/2 < S(N) <
(

1+o(1)
)

N1/2. (3)
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The upper bound in (3)—in the formN1/2 + O(N1/4)—was proved by Erd̋os and Tuŕan [ET41], who
also established the lower bound(1/

√
2−o(1))N1/2; later Chowla [Cho44a, Cho44b] and independently

Erdős (1944, unpublished) applied a result of Singer [Sin38] (Theorem 5 below) to improve the lower
bound to that in (3). Bose and Chowla [BC63] proved a generalization of (3) to ‘Br -sequences’; this
reference also provides a more accessible discussion of Chowla’s result. Eventually Lindström [Lin69]
improved the upper bound toN1/2+N1/4+O(1). It remains open—and was given a price tag by Erdős—
to decide whether, for everyε > 0, the inequalityS(N) < N1/2 + o(Nε) holds. See [BS85, Śos91] for
further discussion and references. See [AKS81, Guy94, Ruz98, Sid32, Sid35] for a precise statement and
related progress on the corresponding infinite problem.

The following theorem from [JKMW03] provides a connection between sequences and labellings; see
also [KP03] and the references therein for antecedents of this result.

Theorem 2 For n ≥ 3, a metric, injective edge-labellingλ of Kn has constant Hamilton-weight if and
only if there is a constant-parity, well-spreadN-sequence(ai)

n
i=1 such that

λ(i j ) =
ai +a j

2
for each edge i j of Kn.

The sequence(ai) is uniquely determined byλ.

Theorem 2 shows that if we defineψcp : Z
+ → N by

ψcp(n) := min{an−1 +an : there exists a constant-parity, well-spreadN-sequencea1 < · · · < an},
then

Λ(n) =
ψcp(n)

2
for everyn≥ 3. (4)

We note in passing that for finite Sidon sequences(ai), similar ‘sum-sets’{ai + a j | i ≤ j} have been
investigated considerably; see [Ruz96] for recent results and further references. For our study ofΛ, we
additionally introduce the functionσcp : Z

+ → N, defined by

σcp(n) := min{an : there exists a constant-parity, well-spreadN-sequencea1 < · · · < an}.

Packing with 2-sums
The definition ofψcp exhibits a ‘packing flavour’; indeed, a variant ofψcp using this terminology was
studied by Graham and Sloane [GS80]. They definedvα(n) to be the smallest nonnegative integerN such
that there exists an integral sequence 0= a1 < · · · < an with the property that the sumsai +a j , for i < j,
belong to[0,N] and represent each element of this set at most once. Ifψ denotes ourψcp without the
constant-parity condition, thenψ = vα . Graham and Sloane tabulated the valuesvα(n) for n≤ 10, gave
exemplary sequences, and outlined a proof of

2n2−O(n3/2) < vα(n) < 2n2 +O(n36/23). (5)

They also considered the three functions that arise wheni < j is changed toi ≤ j (giving the Sidon version
of vα) or when the arithmetic is done moduloN, and the four functions resulting from changingsmallest
to largestandat mostto at least(giving the covering analogues of the four packing functions). By now
these eight functions enjoy a vast literature, much of which was cited already in [GS80].

After proving our main graph-theoretic result (Theorem 6), we shall indicate a slight improvement to
the upper bound in (5). Similar improvements are possible in the bounds for the other packing functions.
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2 Well-spread sequences
Theorem 1 and (2) show thatSr(N)∼ (N/r)1/2. The functionsWr exhibit the same asymptotic behaviour,
since Ruzsa [Ruz93] proved that a well-spread sequence contained in the set{1, . . . ,N} contains at most
N1/2 + 4N1/4 + 11 terms. An upper bound forW(N) of the formN1/2 + O(N1/4) is also implicit in the
work of Graham and Sloane [GS80] and was probably known to these authors. Presently, we shall derive
this result again, in terms ofWr .

To get started, we need a cruder estimate:

Lemma 3 If N is sufficiently large, then Wr(N) < 2.001(N/r)1/2.

Proof. Let n = Wr(N) and 0≤ a1 < · · · < an ≤ N be a well-spread sequence with eachai ≡ k (mod r),
for some 0≤ k < r. The sumsai +a j , for i < j, are distinct, at most 2N− r, congruent modulor to 2k,
and hence lie in the set{2k+ r,2k+ 2r, . . . ,2k+ ℓr}, whereℓ := ⌊(2N− r −2k)/r⌋. Thus

(n
2

)

≤ ℓ, from
whichn < (2ℓ)1/2 +1, and hence the assertion, follow easily. ✷

Theorem 4 Wr(N) < (N/r)1/2 +O((N/r)1/4).

Proof. Let N be large enough to invoke Lemma 3, and setn:=Wr(N). Then there exists a constant-residue,
well-spread sequence 0≤ a1 < · · · < an ≤ N.

For 1≤ i < j ≤ n, Lindstr̈om [Lin69] called j − i theorder of the differencea j −ai . He observed that
the differences of orderν > 0 can be arranged into sequences of the form

aα −aβ,aβ−aγ,aγ−aδ, . . . ,

whereα −β = β− γ = γ−δ = · · · = ν. Because of ‘telescoping’, the sum of all these differences is at
mostνN (and less thanνN for ν > 1). Thus, form≥ 2, the sumS of all the positive differences of order
at mostm is less thanm(m+1)N/2.

Let us callai amean-pointif 2ai = a j +ak for somej,k∈ [n]; notice that in this caseai −ak = a j −ai .
Except for the valuesa j −ai , for mean pointsai (or a j ), the differencesak −aℓ, for 1≤ ℓ < k ≤ n, are
all different since(ai) is well-spread. As the only candidates for mean-points area2, . . . ,an−1, we have at
mostt :=n−2 differences occurring with higher multiplicity, and the well-spread property implies that
this multiplicity is 2. Since(ai) has constant-residue, the differences are all multiples ofr. If 1≤m< nand
s:=n− (m+1)/2, then the number of positive differences of order at mostm is mn−m(m+1)/2 = ms.
Therefore,

S ≥
t

∑
i=1

(ri + ri)+
ms−2t

∑
j=1

(rt + r j ) =
rms(ms+1)

2
− rt (ms− t).

For 1< m< n, it follows that

rms(ms+1)

2
− rt (ms− t) <

m(m+1)

2
N,

so that
r(ms)2

2
<

m(m+1)

2
N+ rmst.
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Since s, t < n, the second term on the right side is less thanrmn2, which by Lemma 3 is at most
(2.001)2mN < 4.5mN. Thus,s2 < N(1+ 10/m)/r, and since(1+ x)1/2 < 1+ x/2 for x = 10/m, we
have

n =
m+1

2
+s<

m+1
2

+

(

N
r

)1/2(

1+
5
m

)

. (6)

With m:= ⌈(N/r)1/4⌉, this gives the bound in the statement of the theorem. ✷

Remarks Our proof of Theorem 4 adapts the main idea of Lindström [Lin69] to well-spread, constant-
residue sequences. Ruzsa [Ruz93] also based his proof on the idea of studying the ‘small’ differences
a j −ai , though in a “somewhat hidden” fashion (quote from [Ruz93]). Here we compare the resulting
implicit constants.

To optimize ours, we iterate the proof once again. Instead of applying Lemma 3 (to boundrmn2 from
above), we apply Theorem 4 itself. This allows us to replace ‘10’ by ‘3+ O((N/r)−1/4)’. To minimize
the right side of (the adjusted) inequality (6), we now choosem to be⌈

√
3(N/r)1/4⌉. These modifications

replace the big-oh term in Theorem 4 by
√

3(N/r)1/4 + O(1). Ruzsa’s proof essentially produces the
value 4 in place of our

√
3.

While we’re comparing bounds, we should mention that the upper bound forSr(N) implied by (1) and
Theorem 4 doesnot improve on earlier results. For example, Lindström’s bound [Lin69] together with (2)
gives the implied constant 1 in place of our

√
3 ✷

3 Edge-labellings with constant Hamilton-weight
We turn to verifying the main conjecture from [JKMW03]. Proofs of the following basic connections are
left to the reader (or see [JKMW03]):

W2(N) ≥ σ−1
cp (N) for everyN ∈ range(σcp); (7)

ψcp(n) ≥ σcp(n)+σcp(n−1) for everyn≥ 2. (8)

We also need a simple upper bound onσcp(n), a theorem on the density of primes, and Singer’s theorem
on difference sets. The first of these follows immediately from our work in [JKMW03]:

σcp(n) < 2n2(1+o(1)). (9)

For the second, we opt for the present state-of-the-art, due to Baker et al. [BHP01]: ifx is sufficiently
large, then there is a primep with

x < p≤ x+x21/40. (10)

For the third, we have

Theorem 5 ([Sin38]) If q is a prime power, then there are integers b0,b1, . . . ,bq ∈ [0,q2 + q] such that
the differences bi − b j , for i 6= j, are congruent, modulo q2 + q+ 1, to the integers1,2, . . . ,q2 + q. In
particular, (bi)

q
i=0 forms a Sidon sequence, hence is well-spread.

Finally, we state and prove our main graph-theoretic result:

Theorem 6 Λ(n) ∼ 2n2; more precisely,

2n2−O(n3/2) < Λ(n) < 2n2 +O(n61/40). (11)
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Proof. For the upper bound, consider an integern, large enough to apply (10) withx = n−1; then we can
find a primep so that

n−1 < p < n+n21/40.

Theorem 5 delivers a well-spread sequence 0≤ b0 < b1 < · · · < bp ≤ p2 + p. Now ai :=2bi−1, for i =
1,2, . . . ,n, defines a constant-parity, well-spread sequence with

an−1 +an = 2(bn−2 +bn−1) ≤ 4p2 +4p−6 < 4n2 +O(n61/40).

By definition,ψcp(n) ≤ an−1 +an, and sinceΛ(n) = ψcp(n)/2 (see (4)), the upper bound in (11) follows.
For the lower bound, letn∈ N andN = σcp(n). Then (7) and Theorem 4 imply that

n = σ−1
cp (N) ≤W2(N) <

(

N
2

)1/2

+O

(

(

N
2

)1/4
)

,

so that
2n2 < N+O(N3/4).

Now (9) shows that
σcp(n) = N > 2n2−O(n3/2).

Thus (8) givesψcp(n) > 4n2−O(n3/2), and again applying (4) yields the desired bound. ✷

Closing remarks
We first elaborate on the lower bound in (3). The idea in the proof of the upper bound in Theorem 6
can be used to show thatSr(N) > (N/r)1/2 for infinitely many integersN and thatSr(N) > (N/r)1/2−
(N/r)21/80 for sufficiently largeN. Absent the modulusr, these observations have been made elsewhere;
cf. [PS95]. The slight improvement here over previously published bounds—e.g., in [PS95], the fraction
5/16 replaces 21/80—results from our use of a more recent prime density theorem.

Baker and Harman [BH96] sketch the history of such theorems, i.e., those of the form

[x,x+xϑ ] contains a prime wheneverx is sufficiently large

for a specified constantϑ ; cf. (10).
An alternate approach to Theorem 6 is to reduce the problem to one considered in [GS80]. It is not

difficult to see thatψcp(n) is achieved whena1 = 0, so that the constant parity is even. ThenΛ(n) can be
identified with Graham and Sloane’svα(n), so that (5) also givesΛ(n) ∼ 2n2.

Turning this observation around shows that our (11) improves (5). This stems from the decrease in the
minimum ϑ since [GS80] appeared. The present valueϑ = 21/40 (cf. 13/23 available to Graham and
Sloane) improves not only (5), but also the upper bounds for the other three packing functions considered
in [GS80].
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versit́e de Montŕeal, 1972, 83pp.

[KP03] S. Kabadi and A.P. Punnen,Weighted graphs with all Hamiltonian cycles of the same length,
Discrete Math.271 (2003), 129–139.

[Lin69] B. Lindström,An inequality for B2-sequences, J. Combin. Theory6 (1969), 211–212.
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