Analysis of some statistics for increasing tree families

Abstract : This paper deals with statistics concerning distances between randomly chosen nodes in varieties of increasing trees. Increasing trees are labelled rooted trees where labels along any branch from the root go in increasing order. Many mportant tree families that have applications in computer science or are used as probabilistic models in various applications, like \emphrecursive trees, heap-ordered trees or \emphbinary increasing trees (isomorphic to binary search trees) are members of this variety of trees. We consider the parameters \textitdepth of a randomly chosen node, \textitdistance between two randomly chosen nodes, and the generalisations where \textitp nodes are randomly chosen Under the restriction that the node-degrees are bounded, we can prove that all these parameters converge in law to the Normal distribution. This extends results obtained earlier for binary search trees and heap-ordered trees to a much larger class of structures.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2004, 6 (2), pp.437-460
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00959019
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 13 mars 2014 - 17:06:31
Dernière modification le : mercredi 29 novembre 2017 - 10:26:15
Document(s) archivé(s) le : vendredi 13 juin 2014 - 12:18:05

Fichier

dm060217.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00959019, version 1

Collections

Citation

Alois Panholzer, Helmut Prodinger. Analysis of some statistics for increasing tree families. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2004, 6 (2), pp.437-460. 〈hal-00959019〉

Partager

Métriques

Consultations de la notice

124

Téléchargements de fichiers

111