Connectedness of number theoretical tilings

Abstract : Let T=T(A,D) be a self-affine tile in \reals^n defined by an integral expanding matrix A and a digit set D. In connection with canonical number systems, we study connectedness of T when D corresponds to the set of consecutive integers \0,1,..., |det(A)|-1\. It is shown that in \reals^3 and \reals^4, for any integral expanding matrix A, T(A,D) is connected. We also study the connectedness of Pisot dual tilings which play an important role in the study of β -expansion, substitution and symbolic dynamical system. It is shown that each tile generated by a Pisot unit of degree 3 is arcwise connected. This is naturally expected since the digit set consists of consecutive integers as above. However surprisingly, we found families of disconnected Pisot dual tiles of degree 4. Also we give a simple necessary and sufficient condition for the connectedness of the Pisot dual tiles of degree 4. As a byproduct, a complete classification of the β -expansion of 1 for quartic Pisot units is given.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2005, 7, pp.269-312
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00959042
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 13 mars 2014 - 17:09:20
Dernière modification le : mercredi 29 novembre 2017 - 10:26:21
Document(s) archivé(s) le : vendredi 13 juin 2014 - 12:18:25

Fichier

dm070116.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00959042, version 1

Collections

Citation

Shigeki Akiyama, Nertila Gjini. Connectedness of number theoretical tilings. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2005, 7, pp.269-312. 〈hal-00959042〉

Partager

Métriques

Consultations de la notice

129

Téléchargements de fichiers

132