Two Pile Move-Size Dynamic Nim

Abstract : The purpose of this paper is to solve a special class of combinational games consisting of two-pile counter pickup games for which the maximum number of counters that can be removed on each successive move changes during the play of the games. Two players alternate moving. Each player in his turn first chooses one of the piles, and his choice of piles can change from move to move. He then removes counters from this chosen pile. A function f:Z^+ → Z^+ is given which determines the maximum size of the next move in terms of the current move size. The game ends as soon as one of the two piles is empty, and the winner is the last player to move in the game. The games for which f(k)=k, f(k)=2k, and f(k)=3k use the same formula for computing the smallest winning move size. Here we find all the functions f for which this formula works, and we also give the winning strategy for each function. See Holshouser, A, James Rudzinski and Harold Reiter: Dynamic One-Pile Nim for a discussion of the single pile game.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2005, 7, pp.1-10
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00959055
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 13 mars 2014 - 17:19:41
Dernière modification le : mercredi 29 novembre 2017 - 10:26:21
Document(s) archivé(s) le : vendredi 13 juin 2014 - 12:20:38

Fichier

dm070101.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00959055, version 1

Collections

Citation

Arthur Holshouser, Harold Reiter. Two Pile Move-Size Dynamic Nim. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2005, 7, pp.1-10. 〈hal-00959055〉

Partager

Métriques

Consultations de la notice

146

Téléchargements de fichiers

121