Non-negative Tensor Factorization for Single-Channel EEG Artifact Rejection

Abstract : New applications of Electroencephalographic recording (EEG) pose new challenges in terms of artifact removal. In our work, we target informed source separation methods for artifact removal in single-channel EEG recordings by exploiting prior knowledge from auxiliary lightweight sensors capturing artifactual signals. To achieve this, we first propose a method using Non-negative Matrix Factorization (NMF) in a Gaussian source separation that proves competitive against the classic multi-channel Independent Component Analysis (ICA) technique. Additionally, we confront a probabilistic Non-negative Tensor Factorization (NTF) with ICA, both used in an original scheme that jointly processes the EEG and auxiliary signals. The adopted NTF strategy is shown to improve separation accuracy in comparison with the usual multi-channel ICA approach and the single EEG channel NMF method.
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00959103
Contributeur : Antoine Liutkus <>
Soumis le : jeudi 13 mars 2014 - 23:02:42
Dernière modification le : mercredi 21 mars 2018 - 18:57:44
Document(s) archivé(s) le : vendredi 13 juin 2014 - 12:40:30

Fichier

MLSP_V1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Cécilia Damon, Antoine Liutkus, Alexandre Gramfort, Slim Essid. Non-negative Tensor Factorization for Single-Channel EEG Artifact Rejection. MLSP, Sep 2013, Southampton, United Kingdom. 2013, 〈http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6661983〉. 〈10.1109/MLSP.2013.6661983〉. 〈hal-00959103〉

Partager

Métriques

Consultations de la notice

580

Téléchargements de fichiers

364