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Finite time observer design for nonlinear

impulsive systems with impact perturbation

G. Zheng, Y. Orlov, W. Perruquetti, J.-P. Richard

Abstract

This paper investigates the observer design problem of nonlinear im-

pulsive systems with impact perturbation. By using the concept of normal

form, this paper proposes a full order finite time observer, which guaran-

tees the finite time convergence independent of the impact perturbation.

Reduced order observer is additionally developed for the proposed normal

form. An illustrative example is given in order to illustrate the capability

of the proposed method.

1 Introduction

Impulsive systems are widely studied in chemical, engineering, and biological
fields ([Lakshmikantham (1989)]) where instantaneous changes of the state vari-
ables are admitted at various time instants. Moreover, from the theoretical point
of view, some non smooth dynamical systems ([Brogliato(1999)]) and sampled-
data systems ([Sun (1993), Sagfors (1998)]) can be treated from an impulsive
systems point of view as well.

Fundamental problems for impulsive systems, such as observability, reach-
ability and controllability, have been widely investigated for different types of
impulsive systems ([Lakshmikantham (1989), Yang(2001), Li (2005)]). Partic-
ularly, in the case of linear impulsive systems with constant coefficients, the
concepts of observability/reachability and controllability proved to be equiva-
lent to those of linear time-invariant systems ([George (2000)]). Controllability
and observability results were developed in [Guan (2002)] for linear impulsive
systems where the controlled actuation were available for the continuous-time
dynamics at impact time instants only and the impulsive effects were lim-
ited to scalings of the state. For the same type of linear impulsive system,
[Xie and Wang(2005)] used a geometric framework to generalize the results of
[Guan (2002)]. For nonlinear systems, finite time observers have been exhaus-
tively discussed in the literature, by using different methods, such as sliding
mode technique ([Perruquetti (1998)]), homogeneity ([Perruquetti (2008)]) de-
lay measurement ([Sauvage (2007)]), output injection ([Engel and Kreisselmeier(2002)])
and algebraic methods ([Fliess and Sira-Ramı́rez(2004), Barbot (2007)]). How-
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ever, few results are reported on finite time observer design for impulsive sys-
tems.

In this paper, we study observer design problem for nonlinear impulsive sys-
tems with persistent impact perturbation. This work is motivated by the fact
that the perturbation cannot be avoided at each impact instant for some prac-
tical applications, for example, for the walking robot, the perturbation always
exists when a robot’s feet touches the ground. For some advanced controllers
relying on the unmeasured states, a finite time observer, which can always es-
timate system states during a prescribed interval, is required under persistent
impact perturbations.

Recently, [Raff and Allgöwer(2007)] proposed to simply couple two Luen-
berger observers to form a finite time observer for linear systems. This paper
adopts this idea to synthesize a finite time observer for nonlinear impulsive
systems with persistent impact perturbation, whose convergence duration is in-
dependent of the persistent perturbation at each impact instant, and can be
fixed a priori.

The concept of a normal form is additionally adopted in order to study the
finite time observer design problem for nonlinear impulsive systems. Roughly
speaking, such a form represents a class of systems possessing the same proper-
ties of the stability, controllability and so on. A normal form used for the ob-
servability study and observer design can be found in [Krener and Isidori(1983),
Krener and Respondek(1985), Boutat (2009), Zheng (2007)] and in the refer-
ences, quoted therein. The basic idea is to deduce a diffeomorphism, transform-
ing a system in question into a common and simple normal form for which the
observability and observer design problems have been already solved. Then,
by inverting the deduced diffeomorphism, the observability and observer design
problems are solved for the original system as well.

This paper is organized as follows. Notations and problem statement are
given in Section 2. Section 3 presents an appropriate normal form and necessary
and sufficient conditions for a transform of a nonlinear impulsive system into
such a normal form to exist. The corresponding full order observer and reduced
order observer are proposed in Section 4. Section 5 highlights the capability of
the proposed method by means of an illustrative example.

2 Notations and problem statement

Consider the following nonlinear impulsive system















ξ̇(t) = f(ξ(t)) + g (ξ(t))u(t), t ∈ [tk−1, tk) with k ∈ Z+

ξ(t+) = γ̃(ξ(t−)) + Γ̃p(t
−), t = tk

y(t) = h(ξ(t))
ξ(t+0 ) = ξ0, t0 = 0

(1)

with an unknown persistent impact perturbation Γ̃p. Hereinafter, ξ ∈ R
n, u ∈

R
p and y ∈ R stand for the state, the admissible control input and the output,
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respectively; f(ξ), g(ξ), h(ξ) and γ̃ are known smooth functions of appropriate
dimensions; Z+ represents the set of positive integer, and t0 < t1 < · · · < tk <
· · · are impact time instants such that

Dmin = inf
k∈Z+

{tk − tk−1} > 0 (2)

and Dmax = supk∈Z+{tk − tk−1} < ∞ and limk→∞ tk = ∞.
The left and right values at impulse time tk are defined as usual

ξ(t+k ) = lim
h→0

ξ(tk + h), ξ(t−k ) = lim
h→0

ξ(tk − h).

with h > 0. For certainty, it is assumed that ξ(t−k ) = ξ(tk), thereby yielding a
solution of (1) to be left continuous at tk. It is also assumed throughout that
(1) is observable ([Hermann and Krener(1977)]) in the impact-free case.

Since in what follows, the underlying system (1) is periodically affected by
unknown impulsive disturbances, many conventional concepts, such as that of
asymptotic observer, is to be re-worked for impulsive systems with impact un-
certainties.

Given tk−1 ≤ t < tk with k ∈ Z+, denote x(t) = x(t, t+k−1, x(t+k−1)) a solution

of (1) initialized at t+k−1 with x(t+k−1).

Definition 1 The following impact system






ż = f1(z, u, y), t ∈ [tk−1, Tk) ∪ (TK , tk)
z(t+) = g1(z(t−)), t = tk−1 + Tk

z(t+) = g2(z(t−)), t = tk

with z ∈ R
q where q ≥ n and some user chosen functions f1, g1 and g2, is

an exponential observer of (1) with the output η : R
q → R

n if the following
inequality

||η (z(t)) − x(t)|| ≤ ae−b(t−tk−1)||η (z(tk−1)) − x(tk−1)||, for tk−1 ≤ t < tk

is satisfied for each interval [tk−1, tk), k ∈ Z+ and some positive constants a
and b.

It is a finite time observer of (1) with the output η : R
q → R

n if there exist
corresponding σk < tk − tk−1, k ∈ Z+ such that

||η (z(t)) − x(t)|| = 0, when t ∈ [tk−1 + σk, tk), k ∈ Z+.

This system is said to be a uniform finite time observer of (1) iff σ = supk∈Z+{σk} ∈
(0, Dmin) where Dmin is specified in (2). Such a σ is further referred to as a
settling time estimate of the observer.

To motivate the above definition it should be noted that although one can
design an asymptotical observer for (1) on each interval [tk−1, tk), k ∈ Z+, how-
ever, the convergence of such an observer on a specific interval [tk−1, tk) would
depend on the perturbation Γ̃p(t

−
k−1), thereby possibly resulting in inappropri-

ate state estimate due to accumulating an estimation error.
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3 Transformation to normal form

By using the concept of normal form, this section is devoted to presenting a
normal form for which an observer is proposed, and then deducing necessary
and sufficient conditions under which (1) can be transformed into this normal
form.

Throughout this article, Lk
fh is the kth Lie derivative of h along f and θi =

dLi−1
f h stands for the associated differentiation for 1 ≤ i ≤ n with dL0

fh = dh.
Since once not affected by impulses, system (1) is assumed to be locally observ-
able, the 1-forms θi are thus linearly independent, i.e. rank{θi, 1 ≤ i ≤ n} = n.
Then, one can construct the well-known Krener & Isidori ([Krener and Isidori(1983)])
frame

τ = (τ1, ..., τn) (3)

with the first vector field τ1 given by the following algebraic equations
{

θi (τ1) = 0 for 1 ≤ i ≤ n − 1
θn (τ1) = 1

whereas the rest of vector fields is obtained by iterating on i:

τi+1 = [τi, f ] for 1 ≤ i ≤ n − 1

where [, ] denotes the conventional Lie bracket.
Setting

θ = (θ1, · · · , θn)
T

, (4)

let us introduce

Ξ = θτ =















0 0 · · · 0 1
0 0 · · · 1 l2,n

...
...

. . .
...

...
0 1 · · · ln−1,n−1 ln−1,n

1 ln,2 · · · ln,n−1 ln,n















(5)

with li,j = θiτj for 2 ≤ i ≤ n and n − i + 2 ≤ j ≤ n. It is clear that Ξ is
invertible. With this in mind, we denote

ω = Ξ−1θ. (6)

Thus, we arrive at the following result which can be viewed as a natural
extension of [Krener and Isidori(1983)] to nonlinear systems with impacts.

Theorem 1 There exists a diffeomorphism x = φ(ξ) which transforms nonlin-
ear impulsive system (1) into















ẋ(t) = Ax(t) + β (y(t)) + ρ (y (t) , u(t)) , t ∈ [tk−1, tk) with k ∈ Z+

x(t+) = γ(x(t−)) + Γp(t
−), t = tk

y(t) = Cx(t)
x(t+0 ) = x0 = φ(ξ0), t0 = 0

(7)
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where

A =















0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















, C = (0, · · · , 0, 1)

γ (x) = φ
(

γ̃(ξ(t−))
)

|
ξ=φ−1(x)

Γp(t
−) =

[

φ(γ̃(ξ(t−)) + Γ̃p(t
−)) − φ(γ̃(ξ(t−)))

]

|
ξ=φ−1(x)

if and only if one of the following conditions holds:

1. [τi, τj ] = 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ n and [g, τl] = 0 for 1 ≤ l ≤ n − 1;

2. dω = 0 and [g, τl] = 0 for 1 ≤ l ≤ n − 1.

Proof 1 This theorem is based on the result in [Krener and Isidori(1983)] where
nonlinear systems without impact perturbations were considered. The first part
of this proof is based on [Zheng (2007)], but in order to keep the paper self
contained, we still detail here the proof of the first part of this theorem.

To begin with, let us show the equivalence between the first condition and the
second condition of the theorem. For this purpose, compute the differential dω
of ω on two vector fields X = τi and Y = τj:

dω(X, Y ) = LXω(Y ) − LY ω(X) − ω([X, Y ]),

where LX is the Lie derivative in X direction. Since ω(τi) = ei and ω(τj) = ej

are constant, then one has dω(τi, τj) = ω([τi, τj ]). Taking into account that ω
is an isomorphism, then one obtains the following equivalence

dω = 0 ⇔ [τi, τj ] = 0

which results in the equivalence between the afore-mentioned conditions of the
theorem.

Necessity: Next let us proof that once (1) can be transformed into (7)
through a diffeomorphism x = φ(ξ), Condition 1 of the theorem is satisfied.
Indeed, just in case, one has φ∗(τi) = ∂

∂xi
for 1 ≤ i ≤ n and φ∗(g) = ρ(y, u) ∂

∂xi

with y = xn, thereby ensuring that [φ∗(τi), φ∗(τj)] = φ∗([τi, τj ]) = 0 for 1 ≤
i ≤ n and 1 ≤ j ≤ n and [φ∗(τl), φ∗(g)] = φ∗([τl, g]) = 0 for 1 ≤ l ≤ n − 1.
Moreover, since ξ = φ(x) is a diffeomorphism, one has [τi, τj ] = 0 for 1 ≤ i ≤ n
and 1 ≤ j ≤ n and [τl, g] = 0 for 1 ≤ l ≤ n − 1.

Sufficiency: In order to prove the sufficiency suppose that [τi, τj ] = 0 for
1 ≤ i ≤ n and 1 ≤ j ≤ n. Then according to Poincaré theorem, there exists
a local diffeomorphism x = φ(ξ) such that ω = dφ = φ∗, φ∗ (τi) = ∂

∂xi
for

1 ≤ i ≤ n. Thus one has

∂φ∗(f)

∂xi

= φ∗([τi, f ]) = φ∗(τi+1) =
∂

∂xi+1
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for 1 ≤ i ≤ n − 1,and by integration one arrives at

φ∗(f) = Ax + β (y) .

Moreover, one has
∂φ∗(g)

∂xi

= φ∗([τi, g]) = 0

for 1 ≤ l ≤ n − 1, and therefore, one obtains

ẋ = φ∗(f) + φ∗(g) (8)

= Ax + β (y) + ρ(y, u).

By definition (6) of ω, one has

ω = Ξ−1θ =















∗ ∗ · · · ∗ 1
∗ ∗ · · · 1 0
...

...
. . .

...
...

∗ 1 · · · 0 0
1 0 · · · 0 0





























dh
dLfh

...
dLn−2

f h

dLn−1
f h















=















∗
∗
...
∗
dh















which ensures that xn = φn (ξ) = h (ξ), thereby yielding y = Cx with C =
(0, · · · , 0, 1).

Finally, with the deduced diffeomorphism x = φ(ξ), it is straightforward to
check that

x(t+) = γ(x(t−)) + Γp(t
−)

at t = tk where γ and Γp are specified in the statement of the theorem. Hence,
system (1) can be transformed into (7) through the diffeomorphism x = φ (ξ)
provided that Condition 1 of the theorem is satisfied. The proof of the theorem
is thus completed.

Theorem 1 gives necessary and sufficient conditions which guarantee the
equivalence, via a diffeomorphism x = φ(ξ), between the nonlinear impulsive
systems (1) and the proposed normal form (7). Due to this equivalence, one
can design an observer for the transformed form (7) to estimate x, and then
by applying the inverse of the diffeomorphism one can obtain the estimation
of ξ, instead of designing observers for (1) to estimate ξ directly. It should
also be noted that even if the observer is global for the transformed form (7),
only a local state estimation of the original system (1) is available with the
present approach that can become singular, dependent of the properties of the
chosen diffeomorphism ([Ciccarella (1993)]). Thus motivated, the subsequent
synthesis of full order and reduced order finite time observers is confined to the
transformed system (7).
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4 Observer design and observation error analy-

sis

4.1 Uniform finite time observer

Provided that either condition of Theorem 1 is satisfied, the nonlinear system
(1) can be represented, via a diffeomorphism, in the normal form (7) where the
pair (A, C) is observable. Hence one can always find two different vectors K1

and K2, such that
Pi = (A − KiC) (9)

is Hurwitz for 1 ≤ i ≤ 2.
For a prescribed small positive constant σ ∈ (0, Dmin) where Dmin is defined

in (2), it is obvious that one can always find two different Hurwitz matrices P1

and P2 in (9), such that the matrix (In×n − eP2σe−P1σ) is well-posed, thus is
invertible. Hence the following matrix

Λ = (Λ1,Λ2) = (In×n − eP2σe−P1σ)−1(−eP2σe−P1σ, In×n) ∈ R
n×2n (10)

is well-posed. Then the following result is in order.

Theorem 2 Let either Condition 1 or Condition 2 of Theorem 1 be satisfied.
Given a prescribed positive constant σ ∈ (0, Dmin), let K1 and K2 be two differ-
ent vectors such that Pi, i = 1, 2 in (9) are Hurwitz, and Λ in (10) is well-posed.
Then the following coupled impulsive dynamics























żi = Azi + β(y) + ρ(y, u) + Ki(y − Czi), t 6= tk−1 and t 6= tk−1 + σ

zi(t
+) = Λ

[

z1(t
−)

z2(t
−)

]

, t = tk−1 + σ

zi(t
+) = γ (z(t−)) , t = tk

zi(t
+
0 ) = z0, t0 = 0

(11)
with i = 1, 2 and the output η = z1 (alternatively, with the output η = z2) form
a uniform finite time observer for (7) with the prescribed settling time estimate
σ.

Proof 2 Denote ǫi = zi − x for i = 1, 2. For a prescribed σ ∈ (0, Dmin), one
has tk−1 + σ < tk. When k = 1, (7) and (11) yield

ǫ̇i(t) = (A − KiC)ǫi(t) = Piǫi(t), for t ∈ [t0, t0 + σ)

which ensures that

z1((t0 + σ)−) = x(t0 + σ) + eP1σ(z0 − x0)
z2((t0 + σ)−) = x(t0 + σ) + eP2σ(z0 − x0)

(12)

Multiplying (12) by Λ specified by (10) results in

x(t0 + σ) = Λ

[

z1((t0 + σ)−)
z2((t0 + σ)−)

]
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The above equality, combined with (11), yields

zi((t0 + σ)+) = x(t0 + σ),

thereby ensuring the exact estimation of x(t) when t0 + σ ≤ t ≤ t−1 .
Since zi((t0 + σ)+) = x(t0 + σ) for i = 1, 2, thus zi of system (11) has the

same dynamics as x defined in (7) when t ∈ (t0 + σ, t−1 ], and it implies

zi(t
−
1 ) = x(t−1 ), for i = 1, 2

and
zi(t

+
1 ) = γ(zi(t

−
1 )), for i = 1, 2

which can be seen again that (11) has the same initial condition zi(t
+
1 ) for the

two coupled systems. By induction, for any k ∈ Z+ and the corresponding time
interval [tk−1, tk), one has

z1(t
+
k−1) = z2(t

+
k−1)

zi((tk−1 + σ)+) = x(tk−1 + σ)
zi(t) = x(t), for tk−1 + σ ≤ t ≤ t−k

that completes the proof of Theorem 2.

Remark 1 The validity of Theorem 2 relies on the well-posedness of the matrix
(In×n − eP2σe−P1σ). Thus the prescribed finite time σ cannot be too close to
zero, otherwise, this matrix becomes ill-posed. In this regard, given a fixed σ,
the higher negative real parts of eigenvalues of both P1 and P2 are chosen as
well as the larger distances between the real parts of eigenvalues of P1 and P2

are the better for inverting the matrix (In×n − eP2σe−P1σ) numerically.

4.2 Observation error analysis

For the proposed observer, it is proved that it estimates the state of the original
system in finite time for each interval [tk−1, tk). Because of the existence of
periodically acting impulse perturbation, it is important to globally characterize
the influence of those impulse perturbations.

Theorem 3 The observation error of the proposed finite time observer (11) is
bounded, and the following L2-gain inequality is satisfied:

∫ ∞

t
+
0

ǫi(t)
T ǫi(t)dt ≤ ρi

∞
∑

k=1

||Γp(tk−1)||
2
2 (13)

with the attenuation level

ρi =
e2σλmax

i − 1

2λmax
i

(14)

where Γp(tk−1) = Γp(t
−
k−1) for 1 ≤ k with Γ(t0) = z0 − x0 being the observation

error of initial conditions, and λmax
i is the maximum real part of the eigenvalues

of
Pi+P T

i

2 defined in (9).
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Proof 3 As shown in the proof of Theorem 2, for any k ∈ N and for a fixed
interval [tk−1, tk), one always has

ǫ̇i(t) = Piǫ(t), when tk−1 ≤ t < tk−1 + σ

where ǫ(tk−1) = Γp(tk−1) with Γp(tk−1) = z0 − x0, and

ǫi(t) = 0, when tk−1 + σ ≤ t < tk

Then one has

ǫi(t) = ePi(t−tk−1)Γp(tk−1), when tk−1 ≤ t < tk−1 + σ

which yields
||ǫi(t)||

2
2 = ||ePi(t−tk−1)Γp(tk−1)||

2
2

≤ e2λmax
i (t−tk−1)||Γp(tk−1)||

2
2

thus arriving at

∫ tk

t
+
k−1

ǫi(t)
T ǫi(t)dt =

∫ tk−1+σ

t
+
k−1

||ePi(t−tk−1)Γp(tk−1)||
2
2dt

≤ ||Γp(tk−1)||
2
2

∫ tk−1+σ

t
+
k−1

e2λmax
i (t−tk−1)dt

= e2λmax
i

σ−1
2λmax

i

||Γp(tk−1)||
2
2

= ρi||Γp(tk−1)||
2
2

It follows
∫ ∞

t
+
0

ǫi(t)
T ǫi(t)dt =

∑∞
k=1

∫ tk

t
+
k−1

ǫi(t)
T ǫi(t)dt

≤ ρi

∑∞
k=1 ||Γp(tk−1)||

2
2.

The proof is completed.

Remark 2 The attenuation level ρi given by (14) depends only on the maxi-
mum real part of the eigenvalues of Pi and the prescribed finite time σ, thus it
is straightforward to obtain that

lim
λmax

i
→0−

ρi = σ, and lim
λmax

i
→−∞

ρi = 0

which yields the following bounds on the observation error:

0 ≤

∫ ∞

t
+
0

ǫi(t)
T ǫi(t)dt ≤ σ

∞
∑

k=1

||Γp(tk−1)||
2
2

Since the pair (A, C) is observable the values of λmax
i , i = 1, 2 can be pre-

specified to have an arbitrarily large magnitude if vectors K1 and K2 are properly
chosen, so that ρi can be tuned to be small enough in order to perfectly attenuate
the influence of the disturbance to an arbitrarily small attenuation level, given
a priori. The role of the map Γp(tk−1) represents the initial error introduced by
the impact disturbance at each tk−1.
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4.3 Robustness with noisy measurement

It is well known that the measurements are usually corrupted by noises, thus this
section discusses the robustness issue for the proposed observer (11) with respect
to noisy measurements. Under this situation, without loss of generalities, let us
suppose that the output of the transformed normal form (7) is corrupted by a
bounded noise µ(t) as follows:

y(t) = Cx(t) + µ(t) (15)

then one can state the following theorem.

Theorem 4 For the transformed canonical form (7) with the noisy output (15),
the observation error for the proposed observer (11) at the prescribed time tk +σ
is bounded, independent of the unknown persistent impact perturbation Γp(t

−
k ),

and satisfies the following inequality:

||ǫ1((tk + σ)+)|| = ||ǫ2((tk + σ)+)|| ≤ κµ0 (16)

where µ0 = supt≥0{µ(t)} and

κ = ρ̃1||K1|| +
ρ̃1||K1|| + ρ̃2||K2||

|1 − ||e(P2−P1)σ||2|

with ρ̃1 = eλmax
1 σ−1
λmax

1
and ρ̃2 = eλmax

2 σ−1
λmax

2
, σ is the prescribed small positive con-

stant, Ki and Pi for 1 ≤ i ≤ 2 are given in (9).

Proof 4 Firstly, let us prove the boundedness of Λ defined in (10). Since

||In×n − eP2σe−P1σ||2 ≥ |||In×n||2 − ||eP2σe−P1σ||2|

= |1 − ||eP2σe−P1σ||2|

thus

||Λ2||2 = ||(In×n − eP2σe−P1σ)−1||2 ≤
1

|1 − ||eP2σe−P1σ||2|

and

||Λ1||2 = ||In×n − Λ2||2 ≤ 1 + ||Λ2||2 ≤ 1 +
1

|1 − ||eP2σe−P1σ||2|

Secondly, let us prove the boundedness of the observation error at the pre-
scribed time σ. For the sake of simplicities, consider firstly t ∈ (t0, t1). With
the noisy output (15) and following the proof of Theorem 2, for 1 ≤ i ≤ 2 one
has

ǫ̇i(t) = (A − KiC)ǫi(t) + Kiµ(t) = Piǫi(t) + Kiµ(t), for t ∈ [t0, t0 + σ)
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After the multiplication with Λ defined in (10), this gives the following observa-
tion error when t = t0 + σ:

ǫi((t0+σ)+) = Λ1

∫ t0+σ

t0

eP1(t0+σ−τ)K1µ (τ) dτ+Λ2

∫ t0+σ

t0

eP2(t0+σ−τ)K2µ (τ) dτ

which implies that

||ǫi((t0 + σ)+)|| ≤ µ0||K1||||Λ1||2

∫ t0+σ

t0

||eP1(t0+σ−τ)||dτ + µ0||K2||||Λ2||2

∫ t0+σ

t0

||eP2(t0+σ−τ)||dτ

≤ µ0||K1||||Λ1||2

∫ t0+σ

t0

eλmax
1 (t0+σ−τ)dτ + µ0||K2||||Λ2||2

∫ t0+σ

t0

eλmax
2 (t0+σ−τ)dτ

≤ µ0||K1||||Λ1||2
eλmax

1 σ − 1

λmax
1

+ µ0||K2||||Λ2||2
eλmax

2 σ − 1

λmax
2

≤ µ0||K1||||Λ1||2ρ̃1 + µ0||K2||||Λ2||2ρ̃2 = κµ0

Since at each time t = tk, the observer states are set as z1(t
+) = z2(t

+) =
γ(z(t−)), thus the above argument can be applied as well for any interval [tk, tk+1).
Therefore, by induction, one can deduce that at each time t = tk + σ, the ob-
servation errors are always bounded as (16). Moreover, since κ in (16) does
not depend on the unknown persistent impact perturbation Γp(t

−
k ), one can con-

clude that the observation error for the proposed observer (11) at the prescribed
time tk + σ is bounded, and does not depend on the unknown persistent impact
perturbation.

Remark 3 Due to the existence of noise in the measurement, one can only
conclude the boundedness of ǫi((tk + σ)+), which is however equal to 0 for the
noise free case. Thus, for tk + σ ≤ t ≤ t−k+1, the observation errors are influ-
enced only by the measurement noise, but not by the unknown persistent impact
perturbation, and this error is governed by the following dynamics:

ǫ̇i(t) = Piǫi(t) + Kiµ(t)

therefore it can be easily seen that the ǫi is ISS ([Sontag(1995)]), since the initial
condition ǫi((tk + σ)+) and the measurement noise µ(t) are both bounded.

4.4 Reduced order uniform finite time observer

The uniform finite time observer given in (11) is of dimension 2n, since two
coupled Luenberger observers are involved. It is well known that, for linear
system, the existence of full order observer implies the existence of reduced order
observer, which is used to only estimate the states except the output. Hence
we can also design a reduced order observer for the systems with impacts. For
this, let us reconsider the proposed normal form (7) which can be decomposed

11



into the following form























ẋ1(t) = A11x1(t) + A12x2(t) + β1 (y) + γ1(y, u), t ∈ [tk−1, tk)
ẋ2(t) = A21x1(t) + A22x2(t) + β2 (y) + γ2(y, u), t ∈ [tk−1, tk)

x(t+) = γ(x(t−)) + Γp(t
−), t = tk

y(t) = x2(t) = Cx(t)
x(t+0 ) = x0, t0 = 0

(17)

where x1 ∈ R
n−1 and x2 ∈ R are the decomposed state vectors; A11 =















0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















∈ R
(n−1)×(n−1), A21 = [0, · · · , 0, 1] ∈ R

1×(n−1), A12 =

0(n−1)×1 ∈ R
(n−1)×1 and A22 = 01×1 ∈ R are the corresponding decomposed

matrices.
It is worth noticing that the observability of (A, C) in (7) ensures that

(A11, A21) in (17) is observable as well. Thus, similarly to full order observer
design for (7), one can also find two different vectors K1 and K2, such that

Qi = (A11 − KiA21) (18)

is Hurwitz for i = 1, 2.
Following the same argument as that for full order observer design, for a

prescribed small positive constant σ ∈ (0, Dmin) where Dmin is defined in (2),
one can also find two different Hurwitz matrices Q1 and Q2 defined in (18), such
that the matrix (I(n−1)×(n−1) − eQ2σe−Q1σ) is well-posed.

Denote

Ω = (I(n−1)×(n−1) − eQ2σe−Q1σ)−1(−eQ2σe−Q1σ, I(n−1)×(n−1)) ∈ R
(n−1)×2(n−1)

(19)
then one has the following result.

Theorem 5 For a prescribed positive constant σ ∈ (0, Dmin), let Ki for i = 1, 2
be two different vectors such that Qi in (18) is Hurwitz, and Ω in (19) is well-
defined. Then the following coupled impulsive dynamics































ζ̇i = (A11 − KiA21)ζi + β1 (y) + γ1(y, u) + (A11Ki + A12 − KiA22 − KiA21Ki)y
−Ki (β2 (y) + γ2(y, u)) , t 6= tk−1 and t 6= tk−1 + σ

ζi(t
+) = Ω

(

ζ1(t
−) + K1y

ζ2(t
−) + K2y

)

− Kiy, t = tk−1 + σ

ζi(t
+) = γ(ζ(t−) + kiy(t−)) − kiy(t−), t = tk

zi = ζi + Kiy
(20)

with initial conditions satisfying

ζ2(t
+
0 ) = ζ1(t

+
0 ) + (K1 − K2)y(t0)
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and the output η = [z1, y]
T

(alternatively, with the output η = [z2, y]
T
) form a

uniform finite time observer for (7) with the prescribed settling time estimate σ.

Proof 5 Similarly to the proof of Theorem 2, denote ǫi = zi − x1 for i = 1, 2.
According to (20), for t 6= tk−1 +σ where σ ∈ (0, Dmin) is a prescribed constant,
one obtains

żi = ζ̇i + Kiẏ
= Qizi + A12y + K1A21x1 + β1(y) + ρ1(y, u)

and this, combined with (17), yields the following dynamics

ǫ̇i(t) = Qiǫi(t), for t 6= tk−1 + σ

When k = 1, the above equality implies

z1((t0 + σ)−) = x1(t0 + σ) + eQ1σ(z1(t
+
0 ) − x0)

z2((t0 + σ)−) = x1(t0 + σ) + eQ2σ(z2(t
+
0 ) − x0)

(21)

Since
ζ2(t

+
0 ) = ζ1(t

+
0 ) + (K1 − K2)y(t0)

then one has
z1(t

+
0 ) = z2(t

+
0 )

Consequently, multiplying (21) by Ω defined in (19) gives

x1(t0 + σ) = Ω

(

z1((t0 + σ)−)
z2((t0 + σ)−)

)

From the impulsive dynamics of ζi in (20), one obtains

zi((t0 + σ)+) = x1(t0 + σ)

and the rest of the proof follows the same line of reasoning as that of the proof
of Theorem 2.

5 Illustrative example

In order to highlight the proposed finite time observers, let us study the following
system



































ξ̇1 =
ξ2
2−2ξ2

1ξ2−2ξ2
1ξ3

2−2ξ1ξ2
2

1+ξ2
2

+ 1
1+ξ2

2
u, t ∈ [tk−1, tk]

ξ̇2 = ξ1 + ξ1ξ
2
2 + ξ2

ξ(t+k ) =

[

γ(ξ1(t
−
k ) + ξ1(t

−
k )ξ2

2(t−k ))
ξ2
2(t−k )

]

+ Γp(t
−
k ), t = tk

y = ξ2

ξ(t+0 ) = ξ0, t0 = 0

(22)
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One has
θ1 = dξ2, θ2 = (1 + ξ2

2)dξ1 + (1 + 2ξ2)dξ2

thus
τ1 = 1

1+ξ2
2

∂
∂ξ1

, τ2 = − 2ξ1ξ2

1+ξ2
2

∂
∂ξ1

+ ∂
∂ξ2

It is straightforward to check that [τ1, τ2] = 0 and [τ1, g] = [τ2, g] = 0 with
g = 1

1+ξ2
2

∂
∂ξ1

.

Then one has

Ξ = θτ =

(

0, 1
1, −2ξ1ξ2 + 2ξ2

)

which yields

ω = Ξ−1θ =

(

1 + ξ2
2 , 2ξ1ξ2

0, 1

)

=

(

d
(

ξ1(1 + ξ2
2)

)

dξ2

)

This gives the following diffeomorphism:

φ =
(

ξ1(1 + ξ2
2), ξ2

)T

through which the studied system proves to be equivalent to the following form:






























ẋ(t) =

[

0 0
1 0

]

x(t) +

[

y2

y

]

+

[

1
0

]

u, t ∈ [tk−1, tk)

x(t+k ) =

[

γ 0
0 1

]

x(t−k ) + Γp(t
−
k ), t = tk

y(t) = [0, 1]x(t)
x(t+0 ) = x0, t0 = 0

(23)

where Γp represents the unknown impact uncertainties.
By choosing K1 = [4, 4]T and K2 = [100, 20]T , one arrives at Hurwitz ma-

trices P1 and P2. Setting σ ∈ {0.2s, 0.8s}, the states of (23) are estimated for
each [tk−1, tk) at the finite time σ = 0.2s or 0.8s. Thus, one can design a full
order finite time observer for (23) of the form (11). In the simulation, we set
tk − tk−1 = 5s for k ∈ Z+, γ = −0.8 and the unknown impact uncertainty
Γp(t

−
k ) belongs to the interval (−0.4, 0.4); u = ÿr − 100(x1 − ẏr) − 20(x2 − yr)

with yr = | sin(π/5t)| for i ∈ {1, 2}. In the simulation, the Dini derivative
([Garg(1998)]) is considered for the non differential reference yr at time t = 5k
for k ∈ Z+. The simulation results, supporting the theory, are depicted in Fig.
1 and 2. Good performance of the proposed observer design is concluded from
these figures.

Figure 1: Simulation of the full order finite time observer with σ = 0.8s.

Figure 2: Simulation of the full order finite time observer with σ = 0.2s.
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6 Conclusion

Due to the existence of impact perturbation in nonlinear impulsive systems, the
convergence of traditional observer highly depends on the initial condition and
periodic impact perturbation, thus resulting in an inconsistent performance.
This paper conceptually develops the finite time observer design of impact sys-
tems. First a normal form is specified for nonlinear impulsive systems and then
based on such a form, two types of finite time observers of full and reduced or-
ders are justified to estimate the state of the underlying system in a prescribed
small interval in spite of persisten impact perturbations.
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