Balancing Sparsity and Rank Constraints in Quadratic Basis Pursuit

Abstract : We investigate the methods that simultaneously enforce sparsity and low-rank structure in a matrix as often employed for sparse phase retrieval problems or phase calibration problems in compressive sensing. We propose a new approach for analyzing the trade off between the sparsity and low rank constraints in these approaches which not only helps to provide guidelines to adjust the weights between the aforementioned constraints, but also enables new simulation strategies for evaluating performance. We then provide simulation results for phase retrieval and phase calibration cases both to demonstrate the consistency of the proposed method with other approaches and to evaluate the change of performance with different weights for the sparsity and low rank structure constraints.
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00960272
Contributeur : Cagdas Bilen <>
Soumis le : mercredi 19 mars 2014 - 10:41:26
Dernière modification le : vendredi 16 novembre 2018 - 02:13:07
Document(s) archivé(s) le : jeudi 19 juin 2014 - 11:23:15

Fichiers

report_calibration.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00960272, version 2
  • ARXIV : 1403.4267

Citation

Cagdas Bilen, Gilles Puy, Rémi Gribonval, Laurent Daudet. Balancing Sparsity and Rank Constraints in Quadratic Basis Pursuit. 2014. 〈hal-00960272v2〉

Partager

Métriques

Consultations de la notice

1473

Téléchargements de fichiers

251