New bounds and algorithms for on-line scheduling: two identical processors, known sum and upper bound on the tasks

Abstract : In this paper we study a semi on-line version of the classical multiprocessor scheduling problem on two identical processors. We assume that the sum of the tasks and an upper bound gamma on the size of each task are known. Each task has to be assigned upon arrival and the assignment cannot be changed later. The objective is the minimization of the maximum completion time on the processors. In this paper we propose new algorithms and improve known lower and upper bounds on the competitive ratio. Algorithms and bounds depend on the value of gamma. An optimal algorithm is obtained for gamma in the interval [ 1/n,2(n+1)/n(2n+1) ] and gamma = (2n-1)/2n(n-1), where n is any integer value larger or equal 2.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2006, 8, pp.1-16
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00961099
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mercredi 19 mars 2014 - 14:29:59
Dernière modification le : mercredi 29 novembre 2017 - 10:26:24
Document(s) archivé(s) le : jeudi 19 juin 2014 - 11:34:08

Fichier

dm080101.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00961099, version 1

Collections

Citation

Enrico Angelelli, Maria Grazia Speranza, Zsolt Tuza. New bounds and algorithms for on-line scheduling: two identical processors, known sum and upper bound on the tasks. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2006, 8, pp.1-16. 〈hal-00961099〉

Partager

Métriques

Consultations de la notice

111

Téléchargements de fichiers

237