R. Boliac and V. V. Lozin, On the Clique-Width of Graphs in Hereditary Classes, Proceedings of ISAAC 2002, pp.44-54, 2002.
DOI : 10.1007/3-540-36136-7_5

A. Brandstädt, J. Engelfriet, H. Le, and V. V. Lozin, Clique-Width for Four-Vertex Forbidden Subgraphs, FCT 2005, pp.174-185, 2005.
DOI : 10.1007/11537311_17

A. Brandstädt, H. Le, and R. Mosca, GEM- AND CO-GEM-FREE GRAPHS HAVE BOUNDED CLIQUE-WIDTH, International Journal of Foundations of Computer Science, vol.15, issue.01, pp.163-185, 2004.
DOI : 10.1142/S0129054104002364

A. Brandstädt, V. B. Le, and J. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Math. Appl, vol.3, 1999.
DOI : 10.1137/1.9780898719796

S. Brandt, Triangle-free graphs and forbidden subgraphs, Discrete Applied Mathematics, vol.120, issue.1-3, pp.25-33, 2002.
DOI : 10.1016/S0166-218X(01)00277-3

URL : http://doi.org/10.1016/s0166-218x(01)00277-3

D. G. Corneil, H. Lerchs, and L. K. Stewart-burlingham, Complement reducible graphs, Discrete Applied Mathematics, vol.3, issue.3, pp.163-174, 1981.
DOI : 10.1016/0166-218X(81)90013-5

URL : http://doi.org/10.1016/0166-218x(81)90013-5

D. G. Corneil, Y. Perl, and L. K. Stewart, Cographs: recognition, applications, and algorithms, Congressus Numer, pp.43-249, 1984.

D. G. Corneil, Y. Perl, and L. K. Stewart, A Linear Recognition Algorithm for Cographs, SIAM Journal on Computing, vol.14, issue.4, pp.926-934, 1985.
DOI : 10.1137/0214065

B. Courcelle, J. Engelfriet, and G. Rozenberg, Handle-rewriting hypergraph grammars, Journal of Computer and System Sciences, vol.46, issue.2, pp.46-218, 1993.
DOI : 10.1016/0022-0000(93)90004-G

B. Courcelle, J. A. Makowsky, and U. Rotics, Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width, Theory of Computing Systems, vol.33, issue.2, pp.125-150, 2000.
DOI : 10.1007/s002249910009

B. Courcelle and S. Olariu, Upper bounds to the clique width of graphs, Discrete Applied Mathematics, vol.101, issue.1-3, pp.77-114, 2000.
DOI : 10.1016/S0166-218X(99)00184-5

J. Fouquet, V. Giakoumakis, and J. Vanherpe, BIPARTITE GRAPHS TOTALLY DECOMPOSABLE BY CANONICAL DECOMPOSITION, International Journal of Foundations of Computer Science, vol.10, issue.04, pp.513-534, 1999.
DOI : 10.1142/S0129054199000368

URL : https://hal.archives-ouvertes.fr/hal-00467645

V. Giakoumakis and J. Vanherpe, -FREE GRAPHS, International Journal of Foundations of Computer Science, vol.14, issue.01, pp.107-136, 2003.
DOI : 10.1142/S0129054103001625

URL : https://hal.archives-ouvertes.fr/hal-00467645

G. Gottlob and R. Pichler, Hypergraphs in model checking: acyclicity and hypertree-width versus clique-width Johansson, Clique-Decomposition, NLC-Decomposition, and Modular Decomposition?Relationships and Results for Random Graphs, SIAM J. Computing Congressus Numerantium, vol.3315, issue.132, pp.351-378, 1998.

J. Liu and H. Zhou, Dominating subgraphs in graphs with some forbidden structure, Discrete Math, pp.163-168, 1994.

V. V. Lozin, Bipartite graphs without a skew star, Discrete Mathematics, vol.257, issue.1, pp.83-100, 2002.
DOI : 10.1016/S0012-365X(01)00471-X

S. Mahfud, Effiziente Algorithmen zur Bestimmung der Unabhängigkeitszahl in Graphen, 2005.

R. M. Mcconnell and J. Spinrad, Modular decomposition and transitive orientation, Discrete Math, pp.189-241, 1999.

R. H. Möhring and F. J. Radermacher, Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization, Annals of Discrete Math, vol.19, pp.257-356, 1984.
DOI : 10.1016/S0304-0208(08)72966-9

R. Mosca, Stable sets in certain P6-free graphs, Discrete Applied Mathematics, vol.92, issue.2-3, pp.177-191, 1999.
DOI : 10.1016/S0166-218X(99)00046-3

S. Olariu, Paw-free graphs, Information Processing Letters, vol.28, issue.1, pp.53-54, 1988.
DOI : 10.1016/0020-0190(88)90143-3

S. Olariu, On the closure of triangle-free graphs under substitution, Information Processing Letters, vol.34, issue.2, pp.97-101, 1990.
DOI : 10.1016/0020-0190(90)90143-L

S. Poljak, A note on stable sets and colorings of graphs, Commun. Math. Univ. Carolinae, vol.15, pp.307-309, 1974.

H. Prömel, T. Schickinger, and A. Steger, A note on triangle-free and bipartite graphs, Discrete Math, pp.531-540, 2002.

B. Randerath, I. Schiermeyer, and M. Tewes, Three-colourability and forbidden subgraphs. II: polynomial algorithms, Discrete Math, pp.137-153, 2002.
DOI : 10.1016/s1571-0653(05)80183-0

J. P. Spinrad, Efficient Graph Representations, Fields Institute Monographs, 2003.
DOI : 10.1090/fim/019

D. P. Sumner-chartrand, Subtrees of a graph and chromatic number, In: The Theory and Applications of Graphs, pp.557-576, 1981.