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TheKn-complement of a graphG, denoted byKn − G, is defined as the graph obtained from the complete graph
Kn by removing a set of edges that spanG; if G hasn vertices, thenKn − G coincides with the complementG of
the graphG. In this paper we extend the previous notion and derive determinant based formulas for the number of
spanning trees of graphs of the formKm

n ± G, whereKm
n is the complete multigraph onn vertices with exactlym

edges joining every pair of vertices andG is a multigraph spanned by a set of edges ofKm
n ; the graphKm

n +G (resp.
Km

n − G) is obtained fromKm
n by adding (resp. removing) the edges ofG. Moreover, we derive determinant based

formulas for graphs that result fromKm
n by adding and removing edges of multigraphs spanned by sets of edges of

the graphKm
n . We also prove closed formulas for the number of spanning tree of graphs of the formKm

n ±G, where
G is (i) a complete multipartite graph, and (ii) a multi-star graph. Our results generalize previous results and extend
the family of graphs admitting formulas for the number of their spanning trees.

Keywords: Kirchhoff matrix tree theorem, complement spanning tree matrix, spanning trees,Kn-complements,
multigraphs.

1 Introduction
The number of spanning trees of a graphG, denoted byτ(G), is an important, well-studied quantity
in graph theory, and appears in a number of applications. Most notable application fields are network
reliability [9, 17, 22], enumerating certain chemical isomers [5], and counting the number of Eulerian
circuits in a graph [15].

Thus, both for theoretical and for practical purposes, we are interested in deriving formulas for the
number of spanning trees of a graphG, and also of theKn-complement ofG; theKn-complementof a
graphG, denoted byKn − G, is defined as the graph obtained from the complete graphKn by removing
a set of edges (of the graphKn) that spanG; if G hasn vertices, thenKn − G coincides with the
complementG of the graphG. Many cases have been examined depending on the choice ofG. For
example, there exist closed formulas for the cases whereG is is a pairwise disjoint set of edges [24],
a chain of edges [16], a cycle [11], a star [20], a multi-star [19, 25], a multi-complete/star graph [7],
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a labelled molecular graph [5], and more recent results whenG is a circulant graph [12, 26], a quasi-
threshold graph [18], and so on (see Berge [2] for an exposition of the main results).

In this paper, we extend the previous notion and consider graphs that result from the complete multi-
graphKm

n by removing multiple edges; we denote byKm
n the complete multigraph onn vertices with

exactlym edges joining every pair of vertices. Based on the properties of the Kirchhoff matrix, which
permits the calculation of the number of spanning trees of any given graph, we derive a determinant based
formula for the number of spanning trees of the graphKm

n −G, whereG is a subgraph ofKm
n , and, thus,

it is a multigraph. Note that, ifm = 1 thenKm
n − G coincides with the graphKn − G.

We also consider graphs that result from the complete multigraphKm
n by adding multiple edges. More

precisely, we consider multigraphs of the formKm
n + G that result from the complete multigraphKm

n

by adding a set of edges (of the graphKm
n ) that spanG. Again, based on the properties of the Kirchhoff

matrix, we derive a determinant based formula for the numberof spanning trees of the graphKm
n +G. To

the best of our knowledge, not as much seems to be known about the numberτ(Km
n + G). Bedrosian in

[1] considered the numberτ(Kn + G) for some simple configurations ofG, i.e., whenG forms a cycle,
a complete graph, or when its vertex set is quite small. More recently, Golin et al. in [12] derive closed
formula for the numberτ(Kn + G) using Chebyshev polynomials, introduced in [4], for the case where
G forms a circulant graph.

We denoteKm
n ±G the family of graphs of the formsKm

n +G andKm
n −G, and derive a determinant

based formula for the numberτ(Km
n ±G). Moreover, based on these results, we generalize our formulas

and extend the familyKm
n ±G to the more general family of graphsFm

n ±G, whereFm
n is the complete

multigraph onn vertices with at leastm ≥ 1 edges joining every pair of vertices.
Based on our results–that is, the determinant based formulas for the number of spanning trees of the

family of graphsτ(Km
n ± G), and using standard algebraic techniques, we generalize known closed

formulas for the number of spanning trees of simple graphs ofthe formKn − G. In particular, we derive
closed formulas for the number of spanning treesτ(Km

n ± G), in the case whereG forms (i) a complete
multipartite graph, and (ii) a multi-star graph.

We point out that our proposed formulas express the number ofspanning treesτ(Km
n ±G) as a function

of the determinant of a matrix that can be easily constructedfrom the adjacency relation of the graphG.
Our results generalize previous results and extend the family of graphs of the formKm

n ± G admitting
formulas for the number of their spanning trees.

2 Preliminaries
We consider finite undirected simple graphs and multigraphswith no loops; the termmultigraphis used
when multiple edges are allowed in a graph. For a graphG, we denote byV (G) andE(G) the vertex set
and edge set ofG, respectively.

Themultiplicity of a vertex-pair(v, u) of a graphG, denoted byℓG(vu), is the number of edges joining
the verticesv andu in G. The minimum multiplicity among all the vertex-pairs ofG is denotedλ(G)
while Λ(G) is the largest such number. Thus, ifλ(G) > 0, then every pair of vertices inG is connected
with at leastλ(G) edges; ifΛ(G) = 1, thenG contains no multiple edges, that is,G is a simplegraph
(note that a simple graph or a multigraph contains no loops).The degreeof a vertexv of a graphG,
denoted bydG(v), is the number of edges incident withv in G. The minimum degree among the vertices
of G is denotedδ(G) while ∆(G) is the largest such number.

It is worth noting that a multigraph can also be viewed as a simple graph whose edges are labeled with
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non-zero integers (weights) which correspond to the multiplicity of the edges. Thus, a multigraph can be
thought as a weighted graph. In this paper we adopt the standard approach.

Let F be the family of complete multigraphs onn vertices with multiplicity at leastm ≥ 1, and let
Fm

n ∈ F . Then,λ(Fm
n ) = m, sinceFm

n has at leastm ≥ 1 edges joining every pair of its vertices.
A complete multigraph onn vertices with exactlym edges joining every pair of its vertices is called
m-complete multigraphand denoted byKm

n . Thus, for them-complete multigraphKm
n we have that

λ(Km
n ) = Λ(Km

n ) = m andδ(Km
n ) = ∆(Km

n ) = (n − 1)m. Note that, the 1-complete multigraph
is the graphKn. By definition, every complete multigraphFm

n contains a subgraph isomorphic to an
m-complete multigraphKm

n .
LetFm

n be a complete multigraph and letC be a set of edges ofFm
n such that the graph which is obtained

from Fm
n by removing the edges ofC is anm-complete multigraphKm

n ; the graph spanned by the edges
of C is called acharacteristicgraph ofFm

n and denoted byH(Fm
n ). By definition, a characteristic graph

H(Fm
n ) contains no isolated vertex.

Let G andH be two multigraphs. The graphG + H is defined as follows:

V (G + H) = V (G) ∪ V (H)

and
vu ∈ E(G + H) ⇐⇒ vu ∈ E(G) or vu ∈ E(H).

By definition, both graphsG andH are subgraphs ofG + H . Moreover, ifv, u ∈ V (G) ∩ V (H), then
ℓG+H(vu) = ℓG(vu) + ℓH(vu).

Let G andH be two multigraphs such thatE(H) ⊆ E(G). The graphG − H is defined as the graph
obtained fromG by removing the edges ofH .

Having defined the graphsG + H and G − H , it is easy to see thatFm
n = Km

n + H(Fm
n ) and

Km
n = Fm

n −H(Fm
n ). In general,H(Fm

n ) 6= Fm
n − Km

n ; the equality holds ifH(Fm
n ) hasn vertices.

The adjacency matrixof a multigraphG on n vertices, denoted byA(G), is ann × n matrix with
diagonal elementsA(G)[i, i] = 0 and off-diagonal elementsA(G)[i, j] = ℓG(vivj). Thedegree matrix
of the multigraphG, denoted byD(G), is ann × n matrix with diagonal elementsD(G)[i, i] = dG(vi)
and off-diagonal elementsD(G)[i, j] = 0. Throughout the paper empty entries in matrices represent0s.

For ann×n matrixM , the(n−1)-st orderminorµi
j is the determinant of the(n−1)× (n−1) matrix

obtained fromM after having deleted rowi and columnj; the i-th cofactorequalsµi
i. TheKirchhoff

matrix L(G) (also known as theLaplacian matrix) for a multigraphG on n vertices is ann × n matrix
with elements

L(G)[i, j] =

{

dG(vi) if i = j,

−ℓG(vivj) otherwise

wheredG(vi) is the degree of vertexvi in the graphG and ℓG(vivj) is the number of edges joining
the verticesvi andvj in G. The matrixL(G) is symmetric, has nonnegative real eigenvalues and its
determinant is equal to zero. Note that,L(G) = D(G) − A(G).

TheKirchhoff matrix tree theorem[3] is one of the most famous results in graph theory. It provides a
formula for the number of spanning trees of a graphG in terms of the cofactors ofG’s Kirchhoff matrix;
it is stated as follows:
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Theorem 2.1 (Kirchhoff Matrix Tree Theorem [3]) For any multigraphG with L(G) defined as above,
the cofactors ofL(G) have the same value, and this value equals the number of spanning treesτ(G) of
the multigraphG.

The Kirchhoff matrix tree theorem provides a powerful tool for computing the numberτ(G) of span-
ning trees of a graphG. For this computation, we first form the Kirchhoff matrixL(G) of the graphG and
obtain the(n − 1) × (n − 1) matrix Li(G) from L(G) by removing itsi-th row and column (arbitrary),
and then compute the determinant of the matrixLi(G). We note that the determinant ofLi(G) simply
counts the number of spanning trees rooted at vertexvi ∈ V (G), which justifies the reason of removing
thei-th row and thei-th column fromL(G). A combinatorial proof of the Kirchhoff matrix tree theorem
can be found in [6].

The number of spanning trees of a graphG can be computed directly (without removing any row or
column) in terms of a matrixL′(G) similar to the Kirchhoff matrixL(G), which is associated with the
graphG [23], or, alternatively, it can be computed by defining a characteristic polynomialdet (L(G) − xI)
on L(G); the latter approach takes into account the computation of the eigenvalues of the matrixL(G)
(see [4, 5, 10, 12, 22, 26]).

In our work, we express the number of spanning trees of a graphof the formKm
n ± G, whereG is a

subgraph ofKm
n on p vertices, in terms of ap × p matrix B(G) associated with the graphG, and not in

terms of ann × n matrixL(Km
n ± G) associated with the whole graphKm

n ± G.

3 The Km
n ± G graphs

In this section, we consider graphs that result from them-complete multigraphKm
n by removing or/and

adding multiple edges. We are interested in deriving determinant based formulas for the number of span-
ning trees of the graphsKm

n − G and Km
n + G, whereG is a multigraph spanned by a set of edges

S ⊆ E(Km
n ). To this end, we define a parameterα as follows: (i)α = 1, for the caseKm

n + G, and (ii)
α = −1, for the caseKm

n − G. In other words,α = ±1, according toKm
n ± G. Based on the value ofα

we conclude with the following result.
Let G be a multigraph spanned by a set of edges of the graphKm

n . We derive formulas for the number
of spanning trees of the graphKm

n ± G; the graphG hasp ≤ n vertices andΛ(G) ≤ m.
In order to compute the numberτ(Km

n − G) we will make use of Theorem 2.1. Thus, we consider the
n × n Kirchhoff matrixL = L(Km

n ± G), which has the form:

L =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m(n − 1)· · · −m −m −m · · · −m

...
. . .

...
...

...
...

...

−m · · ·m(n − 1) −m −m · · · −m

−m · · · −m m(n − 1) + α · dG(v1) −m − α · ℓG(vjvi)

−m · · · −m m(n − 1) + α · dG(v2)

... · · ·
...

. . .

−m · · · −m −m − α · ℓG(vivj) m(n − 1) + α · dG(vp)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(1)

wheredG(vi) is the degree of the vertexvi ∈ G andℓG(vivj) is the multiplicity of the verticesvi and
vj in G. The entries of the off-diagonal positions(n − p + i, n − p + j) of the matrixL are equal to
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−m−α · ℓG(vivj), 1 ≤ i, j ≤ p. Note that, the firstn−p rows and columns ofL correspond to then−p
vertices of the setV (Km

n ) − V (G) and, thus, they have degreem(n − 1) in Km
n ± G.

Let L1 be the(n − 1) × (n − 1) matrix obtained fromL by removing its first row and column. Then,
from Theorem 2.1 we have that

τ(Km
n − G) = det (L1).

In order to compute the determinant of the matrixL1, we add one row and one column to the matrix
L1; the resultingn × n matrix L′

1 has1 in position(1, 1), −m in positions(1, j), 2 ≤ j ≤ n, and 0 in
positions(i, 1), 2 ≤ i ≤ n. It is easy to see that,det(L′

1) = det(L1). Thus, then × n matrix L′
1 has the

following form:

L
′
1 =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 −m · · · −m −m −m · · · −m

0 m(n − 1) · · · −m −m −m · · · −m

...
...

. . .
...

...
...

...
...

0 −m · · · m(n − 1) −m −m · · · −m

0 −m · · · −m m(n − 1) + α · dG(v1) −m − α · ℓG(vjvi)

0 −m · · · −m m(n − 1) + α · dG(v2)

...
... · · ·

...
. . .

0 −m · · · −m −m − α · ℓG(vivj) m(n − 1) + α · dG(vp)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

We denote byL′′
1 the matrix obtained fromL′

1 after multiplying the first row ofL′
1 by −1 and adding

it to the nextn − 1 rows. Thus, the determinant ofL′′
1 is equal to the determinant ofL′

1. Moreover it
becomes:

det (L′′
1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −m · · · −m −m −m · · · −m

−1 mn
...

.. .

−1 mn

−1 mn + α · dG(v1) −α · ℓG(vjvi)

−1 mn + α · dG(v2)

...
.. .

−1 −α · ℓG(vivj) mn + α · dG(vp)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where the entries of the off-diagonal positions(n − p + i, n − p + j) of the matrixL′′
1 are equal to

−α · ℓG(vivj), 1 ≤ i, j ≤ p. Note that, the firstn − p rows of the matrixL′′
1 have non-zero elements in

positions(1, i) and(i, i), 2 ≤ i ≤ n − p. We observe that the sum of all the elements on each row ofL′′
1 ,

except of the first row, is equal tomn− 1; recall that,dG(vi) =
∑

1≤j≤p ℓG(vivj), for everyvi ∈ V (G).
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Thus, we multiply each column of matrixL′′
1 by 1

mn
and add it to the first column, and we obtain:

det (L′′
1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n
−m · · · −m −m −m · · · −m

0 mn
...

.. .

0 mn

0 mn + α · dG(v1) −α · ℓG(vjvi)

0 mn + α · dG(v2)

...
. . .

0 −α · ℓG(vivj) mn + α · dG(vp)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2)

= m · (mn)n−p−2 · det (B),

whereB = mnIp + αL(G) is ap× p matrix; recall that,L(G) is the Kirchhoff matrix of the multigraph
G and thus,L(G) = D(G) ± A(G), whereD(G) andA(G) are the degree matrix and the adjacency
matrix ofG, respectively. Concluding, we obtain the following result.

Theorem 3.1 Let Km
n be them-complete multigraph onn vertices, and letG be a multigraph onp

vertices such thatV (G) ⊆ V (Km
n ) andE(G) ⊆ E(Km

n ). Then,

τ(Km
n ± G) = m · (mn)n−p−2 det(B),

whereB = mnIp +α ·L(G) is ap×p matrix,α = ±1 according toKm
n ±G, andL(G) is the Kirchhoff

matrix ofG.

We note that, for simple graphsKn andG in caseKn −G, Theorem 3.1 has been stated first by Moon
in [16] and numerous authors in various guises used it as a constructive tool to obtain formulas for the
number of spanning trees of graphs of the typeKn − G.

In the previous theorem the graphG is a subgraph ofKm
n , and, thus, it has multiplicityΛ(G) ≤ m.

It follows that the graphKm
n + G has multiplicityΛ(Km

n + G) ≤ 2m. However, we can relax the
previous restriction in the case of the graphKm

n + G. It is not difficult to see that for the matrixL of
Equation (1) we haveλ(G) ≥ 0. Thus, we can define the graphG to be a multigraph onp vertices such
thatV (G) ⊆ V (Km

n ). The following theorem holds.

Theorem 3.2 Let Km
n be them-complete multigraph onn vertices, and letG be a multigraph onp

vertices such thatV (G) ⊆ V (Km
n ). Then,

τ(Km
n + G) = m · (mn)n−p−2 · det(B),

whereB = mnIp + L(G) is ap × p matrix, andL(G) is the Kirchhoff matrix ofG.

4 The F
m
n ± G graphs

In this section we derive determinant based formulas for thenumberτ(Fm
n ±G), whereFm

n is a complete
multigraph andG is a subgraph ofFm

n . We first take into consideration the graphKm
n + G1 − G2 and

derive a determinant based formula for the numberτ(Km
n +G1−G2), and, then, we derive a formula for

the numberτ(Fm
n ± G) using the graphKm

n + G1 − G2 and a characteristic graphH(Fm
n ).
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4.1 The case Km

n
+ G1 − G2

Here, we consider graphs that result from them-complete multigraphKm
n by adding multiple edges of

a graphG1 and removing multiple edges from a graphG2. Let G1 be a multigraph onp1 vertices, such
that V (G1) ⊆ V (Km

n ), and letG2 be a multigraph onp2 vertices, such thatV (G2) ⊆ V (Km
n ) and

E(G2) ⊆ E(Km
n + G1). We next focus on the graphKm

n + G1 − G2, which is obtained from them-
complete multigraphKm

n by first adding the edges of the graphG1 and then removing from the resulting
graphKm

n + G1 the edges ofG2; that is,Km
n + G1 − G2 = (Km

n + G1) − G2.
It is worth noting that(Km

n + G1) − G2 6= Km
n + (G1 − G2), since the graphG2 is not necessarily a

subgraph ofG1. Moreover,V (G1) 6= V (G2).
For the pair of multigraphs(G1, G2) we define theunion-stablegraphsG∗

1 andG∗
2 of (G1, G2) as

follows: G∗
1 is the multigraph that results fromG1 by adding inV (G1) the vertices of the setV (G2) −

V (G1) andG∗
2 is the multigraph that results fromG2 by adding inV (G2) the vertices of the setV (G1)−

V (G2). Thus, by definitionV (G∗
1) = V (G∗

2).
By definition, bothG∗

1 andG∗
2 are multigraphs onp = |V (G1) ∪ V (G2)| vertices, with at leastp − p1

andp − p2 isolated vertices, respectively. SinceKm
n + G∗

1 − G∗
2 = Km

n + G1 − G2, we focus on the
graphKm

n + G∗
1 − G∗

2.
Based on Theorem 2.1, we construct then × n Kirchhoff matrixL = L(Km

n + G∗
1 − G∗

2) associated
with the graphKm

n + G∗
1 − G∗

2; it is similar to that of the case ofKm
n ± G. The difference here is the

p × p submatrix which is formed by the lastp rows and columns ofL, wherep = |V (G1) ∪ V (G2)|.
More precisely, the matrixL has the following form:

L =



































m(n − 1) −m · · · −m −m −m · · · −m

−m m(n − 1) · · · −m −m −m · · · −m

...
...

. . .
...

...
...

...
...

−m −m · · · m(n − 1) −m −m · · · −m

−m −m · · · −m B′(G∗
1, G

∗
2)[1, 1] B′(G∗

1, G
∗
2)[j, i]

−m −m · · · −m B′(G∗
1, G

∗
2)[2, 2]

...
... · · ·

...
. . .

−m −m · · · −m B′(G∗
1, G

∗
2)[i, j] B′(G∗

1, G
∗
2)[p, p]



































where thep × p submatrixB′(G∗
1, G

∗
2) has elements

B′(G∗
1, G

∗
2)[i, j] =

{

m(n − 1) + dG∗

1
(vi) − dG∗

2
(vi) if i = j,

−m − ℓG∗

1
(vivj) + ℓG∗

2
(vivj) otherwise.

We note thatℓG∗

1
(vivj) andℓG∗

2
(vivj) are the number of edges of the verticesvi andvj in G∗

1 andG∗
2,

respectively. The entriesdG∗

1
(vi) anddG∗

2
(vi), 1 ≤ i ≤ p, are the degrees of vertexvi of G∗

1 andG∗
2,

respectively. Note that,V (G∗
1) = V (G∗

2).
It is straightforward to apply a technique similar to that wehave applied for the computation of the

determinant of the matrixL′
1 in the case ofKm

n −G. Thus, in the case ofKm
n +G∗

1−G∗
2, the determinant
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of the matrixL′
1 of Equation (2) becomes

det (L′
1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n
−m · · · −m −m −m · · · −m

0 mn
...

. . .

0 mn

0 B(G∗
1, G

∗
2)[1, 1] B(G∗

1, G
∗
2)[j, i]

0 B(G∗
1, G

∗
2)[2, 2]

...
.. .

0 B(G∗
1, G

∗
2)[i, j] B(G∗

1, G
∗
2)[p, p]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= m · (mn)n−p−2 · det (B(G∗
1, G

∗
2)),

where thep × p submatrixB(G∗
1, G

∗
2) has elements

B(G∗
1, G

∗
2)[i, j] =

{

mn + dG∗

1
(vi) − dG∗

2
(vi) if i = j,

−ℓG∗

1
(vivj) + ℓG∗

2
(vivj) otherwise.

SinceB(G∗
1, G

∗
2) = mnIp + L(G∗

1) − L(G∗
2), we setB = B(G∗

1, G
∗
2) and obtain the following result.

Theorem 4.1 Let Km
n be them-complete multigraph onn vertices, and letG1, G2 be two multigraphs

such thatV (G1) ⊆ V (Km
n ) andE(G2) ⊆ E(Km

n + G1). Then,

τ(Km
n + G1 − G2) = m · (mn)n−p−2 det(B),

wherep = |V (G1) ∪ V (G2)|, B = mnIp + L(G∗
1) − L(G∗

2) is a p × p matrix, L(G∗
1) andL(G∗

2) are
the Kirchhoff matrices of the union-stable graphsG∗

1 andG∗
2 of (G1, G2), respectively.

4.2 The general case F
m

n
± G

Let Fm
n be a complete multigraph onn vertices and letG be a subgraph ofFm

n . We will show that the
previous theorem provides the key idea for computing the number τ(Fm

n ± G), whereFm
n ± G is the

graph that results fromFm
n by adding or removing the edges ofG. Sinceλ(Fm

n ) > 0, we have that
Fm

n = Km
n + H(Fm

n ), whereH(Fm
n ) is a characteristic graph ofFm

n . Then we have that,

Fm
n ± G = Km

n + H(Fm
n ) ± G.

The addition of the edges ofG in the graphFm
n , implies thatFm

n + G = Km
n + G′, where the graph

G′ = H(Fm
n ) + G. Thus, for the computation of the numberτ(Fm

n + G) we can apply Theorem 3.2.
On the other hand, in the case of removal the edges ofG from the graphFm

n , for the computation of the
numberτ(Fm

n − G) we can apply Theorem 4.1, sinceFm
n − G = Km

n + H(Fm
n ) − G. Concluding we

have the following result.

Lemma 4.1 Let Fm
n be a complete multigraph onn vertices andH(Fm

n ) be a characteristic graph of
Fm

n , and letG be a subgraph ofFm
n . Then,

τ(Fm
n ± G) = m · (mn)n−p−2 det(B),
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(a) (b)

Fig. 1: (a) A complete multipartite graphK1,2,3 and (b) a multi-star graphK4(0, 2, 2, 3).

wherep = |V (H(Fm
n ))∪V (G)|, B = mnIp +L(H(Fm

n )∗)±L(G∗) is ap× p matrix andL(H(Fm
n )∗)

andL(G∗) are the Kirchhoff matrices of the union-stable graphsH(Fm
n )∗ andG∗ of (H(Fm

n ), G), re-
spectively.

Note that, we consider the graphFm
n ± G and thereforeG must be a subgraph ofFm

n . However in the
case of theFm

n + G graph, similar to Theorem 3.2, it is obvious thatG can be a graph spanned by any set
of edges joining the vertices ofFm

n .

5 Classes of graphs
In this section, we generalize known closed formulas for thenumber of spanning trees of families of
graphs of the formKn − G. As already mentioned in the introduction there exist many cases for the
τ(Kn − G), depending on the choice ofG. The purpose of this section is to prove closed formulas for
τ(Km

n ±G), by applying similar techniques to that of the case ofKn−G. Thus we derive closed formulas
for the number of spanning treesτ(Km

n ±G), in the cases whereG forms (i) a complete multipartite graph,
and (ii) a multi-star graph.

5.1 Complete multipartite graphs
A graph is defined to be acomplete multipartite(or completek-partite) if there is a partition of its vertex
set intok disjoint sets such that no two vertices of the same set are adjacent and every pair of vertices
of different sets are adjacent. We denote a complete multipartite graph onp vertices byKm1,m2,...,mk

,
wherep = m1 +m2 + · · ·+mk; see Figure 1(a). We note that the number of spanning trees ofa complete
multipartite graph has been considered by several authors in the past [8, 14].

Let G = Km1,m2,...,mk
be a complete multipartite graph onp vertices. In [21] it has been proved that

the number of spanning trees ofKn − G is given by the following formula:

τ(Kn − G) = nn−p−1(n − p)k−1

k
∏

i=1

(n − (p − mi))
mi−1,

wherep is the number of vertices ofG.
In this section, we extend the previous result by deriving a closed formula for the number of their

spanning trees for the graphsKm
n ± G, whereG a complete multipartite graph onp ≤ n vertices. From

Theorem 3.1, we construct thep × p matrix B(G) and add one row and column to the matrixB(G); the
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resulting(p + 1) × (p + 1) matrix B′(G) has1 in position(1, 1), α in positions(1, j), 2 ≤ j ≤ p + 1,
and 0 in positions(i, 1), 2 ≤ i ≤ p + 1; recall that,α = ±1. Thus, the resulting matrixB′(G) has the
following form:

B′(G) =

















1 α α · · · α

M1 −α · · · −α

−α M2 · · · −α
...

...
.. .

...

−α −α · · · Mk

















,

where the diagonalmi ×mi submatricesMi have diagonal elementsmn+α · (p−mi), 1 ≤ i ≤ k. Note
that,det (B(G)) = det (B′(G)).

In order to compute the determinant of the matrixB′(G) we add the first row to the nextp rows. Let
B′′(G) be the resulting matrix. It follows that the determinant ofB′(G) is equal to the determinant of
B′′(G). We multiply the2, 3, . . . , p + 1 columns of the matrixB′′(G) by−1/(mn+ α · p) and add them
to the first column; note that, the sum of each row of the matrixB′′(G) is equal tomn + α · p. Thus, the
determinant of matrixB′′(G) becomes:

det (B′′(G)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 − α·p
mn+α·p α α · · · α

M ′
1

M ′
2

.. .

M ′
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
mn

mn + α · p
· det (M ′

1) · det (M ′
2) · · · · · det (M ′

k), (3)

where themi × mi submatricesM ′
i , 1 ≤ i ≤ k, have the following form:

M ′
i =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

mn + α · (p − mi) + α α · · · α

α mn + α · (p − mi) + α · · · α

...
...

. . .
...

α α · · · mn + α · (p − mi) + α

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

For the determinant of matrixM ′
i we multiply the first row by−1 and add it to the nextmi − 1 rows.

Then, we add the columns of matrixM ′
i to the first column. Observing thatmn+α · (p−mi)+α ·mi =

mn + α · p, we obtain

det (M ′
i) = (mn + α · p) · (mn + α · (p − mi))

mi−1.

Thus, from Equation (3) we have the following result.

Theorem 5.1 Let G = Km1,m2,...,mk
be a complete multipartite graph onp = m1 + m2 + · · · + mk

vertices. Then,

τ(Km
n ± G) = m · (mn)n−p−1(mn + α · p)k−1

k
∏

i=1

(mn + α · (p − mi))
mi−1,
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wherep ≤ n andα = ±1 according toKm
n ± G.

Remark 5.1. The class of complete multipartite graphs contains the class of c-split graphs (complete split
graphs); a graph is defined to be a c-split graph if there is a partition of its vertex set into a stable setS
and a complete setK and every vertex inS is adjacent to all the vertices inK [13].

Thus, a c-split graphG onp vertices andV (G) = K+S is a complete multipartite graphKm1,m2,...,mk

with m1 = |S|, m2 = m3 = · · · = mk = 1 andk = |K| + 1. A closed formula for the number of
spanning trees of the graphKn − G was proposed in [18], whereG is a c-split graph.

Let G be a c-split graph onp vertices and letV (G) = K + S. Then, from Theorem 5.1 we obtain that
the number of spanning trees of the graphsKm

n ± G is given by the following closed formula:

τ(Km
n ± G) = m · (mn)n−p−1(mn + α · |K|)|S|−1(mn + α · p)|K|,

wherep = |K| + |S| andp ≤ n. ✷

5.2 Multi-star graphs

A multi-stargraph, denoted byKr(b1, b2, . . . , br), consists of a complete graphKr with vertices labelled
v1, v2, . . . , vr, andbi vertices of degree one, which are incident with vertexvi, 1 ≤ i ≤ r [7, 19, 25]; see
Figure 1(b).

Let G = Kr(b1, b2, . . . , br) be a multi-star graph onp = r + b1 + b2 + · · · + br vertices. It has been
proved [7, 19, 25] that the number of spanning trees of the graphKn −G is given by the following closed
formula:

τ(Kn − G) = nn−p−2(n − 1)p−r

(

1 +
r
∑

i=1

1

qi − 1

)

·
r
∏

i=1

(qi − 1) ,

whereqi = n − (r − 1 + bi) −
bi

n−1
.

In this section, based on Theorem 3.1, we generalize the previous result by deriving a closed formula
for the number of spanning trees of the graphsKm

n ± G, whereG is a multi-star onp ≤ n vertices. Let
Kr be the complete graph of the multi-star graphG and letv1, v2, . . . , vr be its vertices. The vertex set
consisting of the vertexvi and thebi vertices of degree one which are incident with vertexvi induces a
star onbi + 1 vertices,1 ≤ i ≤ r. We construct a(bi + 1) × (bi + 1) matrix Mi which corresponds to
the star with center vertexvi; it has the following form:

Mi =











mn + α −α
mn + α −α

...
−α −α · · · mn + α · (r − 1 + bi)











,

whereα = ±1.
In order to compute the determinant of the matrixMi we first multiply the first row by−1 and add it to

the nextbi − 1 rows. We then add thebi columns to the first column. Finally, we multiply the first column
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by α
mn+α

and add it to the last column. Thus, by observing thatα2 = 1, we obtain:

det (Mi) = (mn + α)bi ·

(

mn + α · (r − 1 + bi) −
α2bi

mn + α

)

= (mn + α)bi ·

(

mn + α · (r − 1 + bi) −
bi

mn + α

)

= (mn + α)bi · qi,

where

qi = mn + α · (r − 1 + bi) −
bi

mn + α
, 1 ≤ i ≤ r. (4)

We are now in a position to compute the number of spanning trees τ(Km
n ± G) using Theorem 3.1.

Thus, we have
τ(Km

n ± G) = m · (mn)n−p−2 · det (B(G)) (5)

where

B(G) =





























M1,1 −α
M2,2 −α

. . .
. . .

Mr,r −α
−α mn + α · dG(v1) −α · · · −α

−α −α mn + α · dG(v2) · · · −α
. . .

...
...

. . .
...

−α −α −α · · · mn + α · dG(vr)





























is ap × p matrix andMi,i is a submatrix which is obtained fromMi by deleting its last row and its last
column,1 ≤ i ≤ r. The degrees of the vertexvi of Kr is equal todG(vi) = r− 1+ bi, 1 ≤ i ≤ r. It now
suffices to compute the determinant of the matrixB(G). Following a procedure similar to that we applied
to the matrixMi, we obtain:

det (B(G)) = (mn + α)p−r ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

q1 −α · · · −α
−α q2 · · · −α

...
...

. . .
...

−α −α · · · qr

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (mn + α)p−r · det (D).

Recall that,qi = mn+α · (r− 1+ bi)−
bi

mn+α
; see Equation (4). In order to compute the determinant

of ther × r matrix D we first multiply the first row ofD by −1 and add it to ther − 1 rows. Then, we
multiply columni by q1+α

qi+α
, 2 ≤ i ≤ r, and add it to the first column. Expanding in terms of the rows of

matrixD, we have that

det (D) =

(

1 − α

r
∑

i=1

1

qi + α

)

·

r
∏

i=1

(qi + α) .

Thus, substituting the value ofdet (D) into Equation (5), we obtain the following theorem.
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Theorem 5.2 LetG = Kr(b1, b2, . . . , br) be a multi-star graph onp = r + b1 + b2 + · · · + br vertices.
Then,

τ(Km
n ± G) = m · (mn)n−p−2(mn + α)p−r

(

1 − α ·

r
∑

i=1

1

qi + α

)

·

r
∏

i=1

(qi + α) ,

wherep ≤ n, qi = mn + α · (r − 1 + bi) −
bi

mn+α
andα = ±1 according toKm

n ± G.

6 Concluding remarks
In this paper we derived determinant based formulas for the number of spanning trees of the family of
graphs of the formKm

n ± G, and also for the more general family of graphsFm
n ± G, whereKm

n (resp.
Fm

n ) is the complete multigraph onn vertices with exactly (resp. at least)m edges joining every pair of
vertices andG is a multigraph spanned by a set of edges ofKm

n (resp.Km
n ). Based on these determinant

based formulas, we prove closed formulas for the number of spanning treesτ(Km
n ±G), in the case where

G is (i) a complete multipartite graph, and (ii) a multi-star graph.
In light of our results, it would be interesting to consider the problem of proving closed formulas for

the number of spanning treeτ(Km
n ± G) in the cases whereG belongs to other classes of simple graphs

or multigraphs. Moreover, instead of a multigraphG that we have taken into account, we do not know
whether a generalazisation for an arbitrarily weighted graphG holds.

The problem of maximizing the number of spanning trees was solved for some families of graphs of
the formKn − G, whereG is a multi-star graph, a union of paths and cycles, etc. (see [7, 11, 19, 22]).
Thus, an interesting open problem is that of maximizing the number of spanning trees of graphs of the
form Km

n ± G.
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