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The K,,-complement of a grapti, denoted byK,, — G, is defined as the graph obtained from the complete graph
K, by removing a set of edges that sp@anif G hasn vertices, ther¥(,, — G coincides with the complemeft of

the graphG. In this paper we extend the previous notion and derive detemt based formulas for the number of
spanning trees of graphs of the fodf," + G, where K" is the complete multigraph om vertices with exactlyn
edges joining every pair of vertices aadis a multigraph spanned by a set of edge&df; the graphk;' + G (resp.

K" — G) is obtained fromK* by adding (resp. removing) the edges(af Moreover, we derive determinant based
formulas for graphs that result froid;;* by adding and removing edges of multigraphs spanned by §etiges of

the graphK,,". We also prove closed formulas for the number of spannirgdfgraphs of the fornk;* + G, where

G is (i) a complete multipartite graph, and (ii) a multi-staagh. Our results generalize previous results and extend
the family of graphs admitting formulas for the number ofitlspanning trees.

Keywords: Kirchhoff matrix tree theorem, complement spanning tredrixaspanning treesk,-complements,
multigraphs.

1 Introduction

The number of spanning trees of a gra@h denoted byr(G), is an important, well-studied quantity
in graph theory, and appears in a number of applications. t Motable application fields are network
reliability [9, 17, 22], enumerating certain chemical isen® [5], and counting the number of Eulerian
circuits in a graph [15].

Thus, both for theoretical and for practical purposes, weiaterested in deriving formulas for the
number of spanning trees of a gragh and also of the{,,-complement of7; the K,,-complemenbf a
graphG, denoted byK,, — G, is defined as the graph obtained from the complete gfépby removing
a set of edges (of the graphi,,) that spanG; if G hasn vertices, thenk,, — G coincides with the
complement of the graphG. Many cases have been examined depending on the choiGe &or
example, there exist closed formulas for the cases wherg is a pairwise disjoint set of edges [24],
a chain of edges [16], a cycle [11], a star [20], a multi-ste®,[25], a multi-complete/star graph [7],
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a labelled molecular graph [5], and more recent results whda a circulant graph [12, 26], a quasi-
threshold graph [18], and so on (see Berge [2] for an exosdf the main results).

In this paper, we extend the previous notion and considgytgrghat result from the complete multi-
graph K" by removing multiple edges; we denote By* the complete multigraph on vertices with
exactlym edges joining every pair of vertices. Based on the propedfehe Kirchhoff matrix, which
permits the calculation of the number of spanning trees pigaren graph, we derive a determinant based
formula for the number of spanning trees of the graglt — G, whereG is a subgraph of(, and, thus,
it is a multigraph. Note that, if» = 1 thenK* — G coincides with the grapk’,, — G.

We also consider graphs that result from the complete mmaligk;”* by adding multiple edges. More
precisely, we consider multigraphs of the fod]" + G that result from the complete multigraghy”
by adding a set of edges (of the graf§lj*) that span=. Again, based on the properties of the Kirchhoff
matrix, we derive a determinant based formula for the nunebspanning trees of the gragty” + G. To
the best of our knowledge, not as much seems to be known amaumber- (K" + G). Bedrosian in
[1] considered the numbet( K,, + G) for some simple configurations 6f, i.e., whenG forms a cycle,

a complete graph, or when its vertex set is quite small. Mecemtly, Golin et al. in [12] derive closed
formula for the number (K, + G) using Chebyshev polynomials, introduced in [4], for theecahere
G forms a circulant graph.

We denotek]" + G the family of graphs of the form&" + G and K, — G, and derive a determinant
based formula for the numbefK" &+ G). Moreover, based on these results, we generalize our fasnul
and extend the family;* + G to the more general family of grapli§™ + G, whereF is the complete
multigraph onn vertices with at least: > 1 edges joining every pair of vertices.

Based on our results—that is, the determinant based fostiofghe number of spanning trees of the
family of graphs(K]* + G), and using standard algebraic techniques, we generaliaerkiclosed
formulas for the number of spanning trees of simple grapheeform K,, — G. In particular, we derive
closed formulas for the number of spanning treé&” + &), in the case wheré& forms (i) a complete
multipartite graph, and (ii) a multi-star graph.

We point out that our proposed formulas express the numtsgrarining trees( K +G) as a function
of the determinant of a matrix that can be easily construfrted the adjacency relation of the graph
Our results generalize previous results and extend theyarhgraphs of the formk* + G admitting
formulas for the number of their spanning trees.

2 Preliminaries

We consider finite undirected simple graphs and multigraplis no loops; the ternmultigraphis used
when multiple edges are allowed in a graph. For a g@ptve denote by (G) andE(G) the vertex set
and edge set a7, respectively.

Themultiplicity of a vertex-paifv, ) of a graphz, denoted by (vu), is the number of edges joining
the verticesv andw in G. The minimum multiplicity among all the vertex-pairs 6fis denoted\(G)
while A(G) is the largest such number. ThusAifG) > 0, then every pair of vertices i@ is connected
with at least\(G) edges; ifA(G) = 1, thenG contains no multiple edges, that ,is a simplegraph
(note that a simple graph or a multigraph contains no loop$)e degreeof a vertexv of a graphG,
denoted byl (v), is the number of edges incident within G. The minimum degree among the vertices
of G is denoted(G) while A(G) is the largest such number.

It is worth noting that a multigraph can also be viewed as @&rgraph whose edges are labeled with
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non-zero integers (weights) which correspond to the mlidttp of the edges. Thus, a multigraph can be
thought as a weighted graph. In this paper we adopt the staiagaroach.

Let F be the family of complete multigraphs envertices with multiplicity at leastn > 1, and let
E™ ¢ F. Then,A(F") = m, sinceF'" has at leastn > 1 edges joining every pair of its vertices.
A complete multigraph om vertices with exactlyn edges joining every pair of its vertices is called
m-complete multigrapland denoted by<". Thus, for them-complete multigraph;* we have that
MK = AKY) = mandd(KT) = A(K') = (n — 1)m. Note that, the 1-complete multigraph
is the graph/(,,. By definition, every complete multigrapf* contains a subgraph isomorphic to an
m-complete multigrapti”.

Let F"* be a complete multigraph and [ebe a set of edges @t* such that the graph which is obtained
from F by removing the edges @fis anm-complete multigrapti(,*; the graph spanned by the edges
of C is called acharacteristicgraph of I/ and denoted b§{(F). By definition, a characteristic graph
H(F™) contains no isolated vertex.

Let G andH be two multigraphs. The graphi + H is defined as follows:

V(G+H)=V(G)UV(H)

and
vu € B(G+ H) <= vu € E(G) orvu € E(H).

By definition, both graph& and H are subgraphs aff + H. Moreover, ifv,u € V(G) NV (H), then
Lorm(vu) = La(vu) + Ly (vu).

Let G and H be two multigraphs such th#t(H) C E(G). The graph — H is defined as the graph
obtained fromG by removing the edges df.

Having defined the graph& + H andG — H, it is easy to see thak)* = K* + H(F,*) and
K" = F" — H(F!"). IngeneralH(E)") # F}" — K; the equality holds if<(F;) hasn vertices.

The adjacency matribof a multigraphG on n vertices, denoted byA(G), is ann x n matrix with
diagonal elementsl(G)[z, ] = 0 and off-diagonal elementd(G)[i, j] = ¢c(v;v;). Thedegree matrix
of the multigraphG, denoted byD(G), is ann x n matrix with diagonal element®(G)[i, i] = dg(v;)
and off-diagonal element®(G)[i, j] = 0. Throughout the paper empty entries in matrices repre¥ent

For ann x n matrix M, the(n — 1)-st ordeminor 1./, is the determinant of thg: — 1) x (n. — 1) matrix
obtained from)M after having deleted row and columny; the i-th cofactorequalsui. TheKirchhoff
matrix L(G) (also known as theaplacian matrij for a multigraphG onn vertices is am x n matrix
with elements

L@ j] = {dj;(“) .
—Lla(viv;)  otherwise

wheredq(v;) is the degree of vertex; in the graphG and ¢ (v;v;) is the number of edges joining
the verticesy; andv; in G. The matrixL(G) is symmetric, has nonnegative real eigenvalues and its
determinant is equal to zero. Note tha{G) = D(G) — A(G).

The Kirchhoff matrix tree theorerf8] is one of the most famous results in graph theory. It plegia
formula for the number of spanning trees of a grapm terms of the cofactors af’s Kirchhoff matrix;
it is stated as follows:
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Theorem 2.1 (Kirchhoff Matrix Tree Theorem [3]) For any multigraphGZ with L(G) defined as above,
the cofactors of .(G) have the same value, and this value equals the number of spaineesr(G) of
the multigraphG.

The Kirchhoff matrix tree theorem provides a powerful toot Eomputing the number(G) of span-
ning trees of a grap&'. For this computation, we first form the Kirchhoff matiiXG) of the graph= and
obtain the(n — 1) x (n — 1) matrix L;(G) from L(G) by removing itsi-th row and column (arbitrary),
and then compute the determinant of the mafrjxG). We note that the determinant &f(G) simply
counts the number of spanning trees rooted at verfex V (G), which justifies the reason of removing
thei-th row and the-th column fromL(G). A combinatorial proof of the Kirchhoff matrix tree theorem
can be found in [6].

The number of spanning trees of a gra@ican be computed directly (without removing any row or
column) in terms of a matrixL’(G) similar to the Kirchhoff matrixZL(G), which is associated with the
graphG [23], or, alternatively, it can be computed by defining a eleteristic polynomiadet (L(G) — xI)
on L(G); the latter approach takes into account the computatiohegigenvalues of the matri&(G)
(see [4,5, 10, 12, 22, 26]).

In our work, we express the number of spanning trees of a gofie form K] + G, whereG is a
subgraph oK™ on p vertices, in terms of @ x p matrix B(G) associated with the gragh, and not in
terms of am x n matrix L(K"* + G) associated with the whole gragt]” + G.

3 The K" £ G graphs

In this section, we consider graphs that result fromsthreomplete multigrapt* by removing or/and
adding multiple edges. We are interested in deriving deteant based formulas for the number of span-
ning trees of the graphd<)" — G and K" + G, whereG is a multigraph spanned by a set of edges
S C E(K™). To this end, we define a parameteas follows: (i)a = 1, for the caseX™ + G, and (ii)
o = —1, for the case(]" — G. In other wordspr = +1, according tak " = G. Based on the value of
we conclude with the following result.

Let G be a multigraph spanned by a set of edges of the gigjph We derive formulas for the number
of spanning trees of the gragti™* &+ G; the graphG hasp < n vertices and\(G) < m.

In order to compute the numbe(K]* — G) we will make use of Theorem 2.1. Thus, we consider the
n x n Kirchhoff matrix L = L(K"* + G), which has the form:

rm(n—1)--- —m -m -m e —-m .
-m ---m(n—1) —m —m e —m
L=| —m - —m mn-Dtadefv)  “mea-delu) | Q)
-m - —m m(n—1) 4+ a - de(ve)
Ll —-m - —m —m — a - La(vivy) mn—1) 4+ a-dae(vp)

wheredq(v;) is the degree of the vertex € G and/¢(v;v;) is the multiplicity of the vertices; and
vj in G. The entries of the off-diagonal positio® — p + ¢,n — p + j) of the matrixL are equal to
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—m—a-la(vv;), 1 <1, j < p. Note that, the first — p rows and columns aof correspond to the —p
vertices of the se¥ (K™) — V(G) and, thus, they have degregn — 1) in K™ + G.

Let L; be the(n — 1) x (n — 1) matrix obtained froml. by removing its first row and column. Then,
from Theorem 2.1 we have that
T(K" — G) =det (Ly).

n

In order to compute the determinant of the matkix we add one row and one column to the matrix
Ly; the resulting: x n matrix L} hasl in position(1,1), —m in positions(1,j),2 < j < n,and 0in
positions(z, 1), 2 < i < n. Itis easy to see thafet(L]) = det(L;). Thus, then x n matrix L} has the
following form:

rr -m -+ —-m -m -m xx —-m T
Om(n—1)--- —m —m —m —m
o 0 -m m(n —1) —m —m —m
"Ylo o -m - —m m(n —1) + a-dg(vi) —m — a-La(vjv;)
0 —-m - —m m(n—1) + a-da(v2)
L0 —m - —m i —m—a-lo(viv)) m(n—1)+ «a-da(vp) |

We denote by} the matrix obtained froni} after multiplying the first row ofZ.;] by —1 and adding
it to the nextn — 1 rows. Thus, the determinant @f/ is equal to the determinant df;. Moreover it
becomes:

1 —m —-m -m -m -m
-1 mn
d L/I _1 SRS
et (Ly) = -1 cmn+ a - dg(vy) —a - Lg(vjvi)
-1 mn + « - dg(ve)
1 —a - La(vvj) mn + o - dg(vp)

where the entries of the off-diagonal positiofis — p + i,n — p + j) of the matrix L} are equal to
—a - Lg(vivy), 1 < 1,5 < p. Note that, the firsk, — p rows of the matrixZ" have non-zero elements in
positions(1,4) and(i, ), 2 < i < n — p. We observe that the sum of all the elements on each raf pf
except of the first row, is equal tan — 1; recall thatde (v;) = >, <, la(viv;), foreveryy; € V(G).



240 S.D. Nikolopoulos and C. Papadopoulos

Thus, we multiply each column of matri&/ by # and add it to the first column, and we obtain:

L—m -m -m -m -m
0 mn
d t LI/ _ O mno 2
et (Ly) = 0 cmn+ a - dg(vy) —a - Lg(vjv;) @
0 mn + « - dg(va)
0 —a - Lg(vivg) mn + a - dg(vp)

= m-(mn)""P7? . det (B),

whereB = mnl, + oL(G) is ap x p matrix; recall thatL(G) is the Kirchhoff matrix of the multigraph
G and thus,L(G) = D(G) + A(G), whereD(G) and A(G) are the degree matrix and the adjacency
matrix of G, respectively. Concluding, we obtain the following result

Theorem 3.1 Let K" be them-complete multigraph om vertices, and letG be a multigraph orp
vertices such that' (G) C V(K*) andE(G) C E(K!™). Then,

(K™ £ G) =m- (mn)" P2 det(B),

whereB = mnl,+«a- L(G) is ap x p matrix,« = +1 according toK" + G, and L(G) is the Kirchhoff
matrix of G.

We note that, for simple graphfs,, andG in caseK,, — G, Theorem 3.1 has been stated first by Moon
in [16] and numerous authors in various guises used it as stremtive tool to obtain formulas for the
number of spanning trees of graphs of the type— G.

In the previous theorem the graghis a subgraph oK, and, thus, it has multiplicithA(G) < m.

It follows that the graphK* + G has multiplicity A(K" + G) < 2m. However, we can relax the
previous restriction in the case of the grafli* + G. It is not difficult to see that for the matrik of
Equation (1) we hava(G) > 0. Thus, we can define the graghto be a multigraph op vertices such
thatV(G) C V(K™). The following theorem holds.

Theorem 3.2 Let K" be them-complete multigraph om vertices, and letG be a multigraph orp
vertices such that’ (G) C V(K™). Then,

T(K™ +G) =m - (mn)" P72 . det(B),
whereB = mnl, + L(G) is ap x p matrix, andL(G) is the Kirchhoff matrix of7.

4 The F" + G graphs

In this section we derive determinant based formulas fontimaberr (F + G), whereF™ is a complete
multigraph and> is a subgraph of*. We first take into consideration the grapfj’ + G; — G2 and
derive a determinant based formula for the numiést]” + G; — G2), and, then, we derive a formula for
the number(F* + G) using the graplK* + G — G and a characteristic gragti(F").



On the number of spanning trees8f" + G graphs 241
4.1 Thecase K"+ G; — G

Here, we consider graphs that result from thecomplete multigraph<"* by adding multiple edges of
a graphG; and removing multiple edges from a gra@h. Let G; be a multigraph om; vertices, such
thatV(G,) C V(K"), and letG, be a multigraph om, vertices, such that’ (G2) C V(K!*) and
E(G2) C E(K]™ 4+ G1). We next focus on the grapki’* + G1 — G2, which is obtained from then-
complete multigrapti()” by first adding the edges of the gragh and then removing from the resulting
graphK™ + G, the edges of7s; thatis, K" + G1 — Go = (K" + G1) — Gbs.

Itis worth noting that K" + G1) — G2 # K" + (G1 — G2), since the graplis is not necessarily a
subgraph of7;. Moreover,V(G;) # V(Gz).

For the pair of multigraph$G, G2) we define theunion-stablegraphsG; and G5 of (G1,G2) as
follows: G7 is the multigraph that results frod; by adding inV(G,) the vertices of the sét (G3) —
V(G1) andG3 is the multigraph that results frofd; by adding inV (G») the vertices of the séf (G;) —
V(G2). Thus, by definitiorV/ (G7) = V(G3).

By definition, bothG} andG3 are multigraphs op = |V (G1) U V(G2)| vertices, with at least — p;
andp — p, isolated vertices, respectively. Sinég" + G7 — G5 = K" + G; — G2, we focus on the
graphK" 4+ G} — G3.

Based on Theorem 2.1, we construct the n Kirchhoff matrix L = L(K™ + G} — G%) associated
with the graphK" + G7 — G3%; it is similar to that of the case k" = G. The difference here is the
p x p submatrix which is formed by the lagtrows and columns of, wherep = |V(G1) U V(G2)|.
More precisely, the matriX. has the following form:

[m(n—1) —-m -+ —m -m -m e —-m ]
-m mn—1)--- —m —-m —-m e —-m
| ™ —m w1 omo S L
—m -m - —m B(GLG)[L ] B'(G1,G3)j, 1]
—m -m .- —-m B/( T7G§)[272]
L —m - —m I BY(GY, G ] B'(G},G3)[p,p) |

where thep x p submatrixB’ (G}, G%) has elements

B(G}, Gl ] = {m(” D dos(v) ~ dos(vo) T4 =
—-m — EG’{ (’Uﬂ)j) + €G§ (’Uﬂ)j) otherwise
We note thats: (v;v;) andlg; (v;v;) are the number of edges of the vertiegandv; in G7 andG3,
respectively. The entriedg: (v;) anddg; (v;), 1 < i < p, are the degrees of vertex of G} andGs3,
respectively. Note thal/ (G}) = V(G3).
It is straightforward to apply a technique similar to that teve applied for the computation of the
determinant of the matriX/ in the case oK* — G. Thus, in the case df " + G} — G3, the determinant
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of the matrixZ} of Equation (2) becomes

% -m —-m -m -m -m
0 mn
det (L) 0 mn
e = A e A RPN
! 0 B( 1’G2)[1’1] B( 1’G2)[]’Z]
0 § B(G1.G3)[2,2]
0 - B(G%,G3)[i, j] B(G%,G3)[p, 1]

= m-(mn)""P72 . det (B(G},G3)),
where thep x p submatrixB(G7, G5) has elements
* SN[ - mn‘f’dG’{ Vi —dGS V; Ifz:],
B(G,G)lid] = (i)~ das (v _
—Llar (vivg) +Lay (viv;)  otherwise
SinceB(G7, G5) = mnl, + L(G}) — L(G3), we setB = B(G7, G5) and obtain the following result.
Theorem 4.1 Let K" be them-complete multigraph on vertices, and letz;, G2 be two multigraphs
such thatV' (Gy) C V(K[") andE(G2) C E(K™ + G;). Then,
(K™ 4+ Gy — G2) = m - (mn)" P~ det(B),
wherep = |V(G1) UV (Gs)|, B = mnl, + L(G}) — L(G3) is ap x p matrix, L(G7) and L(G3) are
the Kirchhoff matrices of the union-stable grapghs and G35 of (G, G2), respectively.
4.2 The general case F" + GG

Let F* be a complete multigraph amvertices and letG be a subgraph of)". We will show that the
previous theorem provides the key idea for computing thelem(E* + G), whereF" 4+ G is the
graph that results fron¥ by adding or removing the edges 6f SinceA(F!*) > 0, we have that
F™ = K™+ H(F™), whereH(F™) is a characteristic graph d&". Then we have that,

F'+G=KI"+H(F") +G.

The addition of the edges @f in the graphF", implies thatF)™ + G = K" + G’, where the graph
G' = H(E™) + G. Thus, for the computation of the numbgF;™ + G) we can apply Theorem 3.2.
On the other hand, in the case of removal the edges wdbm the graph#), for the computation of the
numberr(E — G) we can apply Theorem 4.1, sinéé&” — G = K" + H(F]") — G. Concluding we
have the following result.

Lemmad4.l Let F)" be a complete multigraph om vertices andH (") be a characteristic graph of
E'™, and letG be a subgraph of*. Then,

7(F™ £ G) =m- (mn)" P2 det(B),
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(a) (b)
Fig. 1: (a) A complete multipartite grapK’ 2,3 and (b) a multi-star grapk’4 (0, 2, 2, 3).

wherep = |V(H(F*))UV(G)|, B =mnl, + L(H(E}")*)+ L(G*) is ap x p matrix andL(H(EF}")*)
and L(G™) are the Kirchhoff matrices of the union-stable gragiéF")* and G* of (H(F"),G), re-
spectively.

Note that, we consider the gragti® + G and therefor&s must be a subgraph @". However in the
case of theF* + G graph, similar to Theorem 3.2, it is obvious tltatan be a graph spanned by any set
of edges joining the vertices &i".

5 Classes of graphs

In this section, we generalize known closed formulas forribenber of spanning trees of families of
graphs of the formK,, — G. As already mentioned in the introduction there exist maases for the
7(K, — G), depending on the choice 6f. The purpose of this section is to prove closed formulas for
T(K™£@), by applying similar techniques to that of the cas&@f— G. Thus we derive closed formulas
for the number of spanning tree§K ' +G), in the cases whei@ forms (i) a complete multipartite graph,
and (ii) a multi-star graph.

5.1 Complete multipartite graphs

A graph is defined to be @eomplete multipartitéor completek-partite) if there is a partition of its vertex
set intok disjoint sets such that no two vertices of the same set ascenf and every pair of vertices
of different sets are adjacent. We denote a complete muitpgraph onp vertices byK.., m,.....my»
wherep = my +mo+- - - +my; see Figure 1(a). We note that the number of spanning treeesaihplete
multipartite graph has been considered by several authdheipast [8, 14].

Let G = K, m.,...m, D€ @ complete multipartite graph ernvertices. In [21] it has been proved that
the number of spanning trees &%, — G is given by the following formula:

k
T(Kn — G) — nn—P—l(n _ p)k—l H(n _ (p _ mi))mi_l,

i=1

wherep is the number of vertices af.

In this section, we extend the previous result by derivindosed formula for the number of their
spanning trees for the graphS" + G, whereG a complete multipartite graph gn< n vertices. From
Theorem 3.1, we construct tipex p matrix B(G) and add one row and column to the matBXG); the
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resulting(p + 1) x (p + 1) matrix B'(G) hasl in position(1, 1), « in positions(1,5),2 < j < p+1,
and 0 in positiongi, 1), 2 < i < p + 1; recall that,a = £1. Thus, the resulting matri8’(G) has the
following form:

'l o« o -+ o ]
M, —a - —«

BI(G): —« M2 — ’
L —a _a ...Mk_

where the diagonakh; x m; submatrices//; have diagonal elementsn + a - (p —m;), 1 <i < k. Note
that,det (B(G)) = det (B'(G)).

In order to compute the determinant of the maf% ) we add the first row to the nextrows. Let
B"(G) be the resulting matrix. It follows that the determinant®fG) is equal to the determinant of
B"(G). We multiply the2, 3,. .., p+ 1 columns of the matriB”(G) by —1/(mn + « - p) and add them
to the first column; note that, the sum of each row of the mag/{XG) is equal tomn + « - p. Thus, the
determinant of matri3” (G) becomes:

— mrf‘f;.p a « «
My
det (B"(GQ)) = M;
Mj,
- _m . AT /
= miap det (M7) - det (M3) det (M},), 3)

where them; x m; submatrices\f/, 1 < i < k, have the following form:

mn+a-(p—m;)+a o' a
! mn+a-(p—m;)+a - !
M/ =
! a emnta-(p—my) +a

For the determinant of matri&/; we multiply the first row by—1 and add it to the nexi:; — 1 rows.
Then, we add the columns of mati; to the first column. Observing thatn+« - (p —m;) +a-m; =
mmn + « - p, we obtain

det (M;) = (mn +ac-p) - (mn+ - (p—mi)™ ",
Thus, from Equation (3) we have the following result.

Theorem 5.1 LetG = Ky, m,,....m, be a complete multipartite graph gn= my + my + -+ + my
vertices. Then,
k
(K £G) =m - (mn)" "~ (mn + a -p)k_1 H(mn +a-(p—m))™
=1
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wherep < n anda = +1 according toK," + G.

Remark 5.1. The class of complete multipartite graphs contains thes@és-split graphs (complete split
graphs); a graph is defined to be a c-split graph if there isratipa of its vertex set into a stable sgt
and a complete sét” and every vertex ity is adjacent to all the vertices i¥ [13].

Thus, a c-split graplir onp vertices and/(G) = K + 5 is a complete multipartite graph,,, m......m.
with m; = |S|, ma = ms = --- = my, = 1 andk = |K| + 1. A closed formula for the number of
spanning trees of the graghy,, — G was proposed in [18], whel& is a c-split graph.

Let G be a c-split graph op vertices and leV (G) = K + S. Then, from Theorem 5.1 we obtain that
the number of spanning trees of the gragffs + G is given by the following closed formula:

(K" +G)=m- (mn)" P Y mn+ oK) (mn +a-p)&l,
wherep = | K|+ |S|andp <n. O

5.2 Multi-star graphs

A multi-stargraph, denoted b¥,.(b1, bo, . . ., b,-), consists of a complete gragty. with vertices labelled
v1, Ve, . .., Uy, @andb; vertices of degree one, which are incident with vertigxl < i < r [7, 19, 25]; see
Figure 1(b).

LetG = K, (b1, b, ...,b.) be a multi-star graph op = r + b; + bs + - - - + b, vertices. It has been
proved [7, 19, 25] that the number of spanning trees of thplghg, — G is given by the following closed
formula:

T(Ky = G)=n""P"2(n - 1)P~" <1 P - 1) @ -1,

=1
whereq; =n— (r—14+10b;) — nb_"'l.

In this section, based on Theorem 3.1, we generalize théqugvesult by deriving a closed formula
for the number of spanning trees of the grapfis + G, whereG is a multi-star orp < n vertices. Let
K, be the complete graph of the multi-star graghand letvy, vo, .. ., v, be its vertices. The vertex set
consisting of the vertex; and theb; vertices of degree one which are incident with vertexnduces a
star onb; + 1 vertices,1 < i < r. We construct db; + 1) x (b; + 1) matrix M; which corresponds to
the star with center vertex; it has the following form:

mn —+ « —Q
mn + « -
Mi: )
—« -« cooomnta-(r—140;)

wherea = +1.
In order to compute the determinant of the matyix we first multiply the first row by-1 and add it to
the nexth; — 1 rows. We then add thig columns to the first column. Finally, we multiply the first aain
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by —2_ and add it to the last column. Thus, by observing tifat= 1, we obtain:

mn+a
b, OéQbi
det (M;) = (mn+a)” - |mn+a-(r—14+0b;)—
mn + «
b;

= (mn—l—a)b’i-<mn+a-(r—1+bi)— )
mn + «

= (mn+ Oz)b'i “ i,

where

Q

b
qizmn+o¢-(r—1+bi)—mn+a

1 <i<r.

(4)

We are now in a position to compute the number of spanning tréE’™ + G) using Theorem 3.1.

Thus, we have
T(K'+G)=m- (mn)"_p_2 - det (B(G))

where
[ M171 —Q
MQ’Q —Q
Mr,r
B(G) - —« mn+a-dg(v1) —Q
—« —« mn + « - dg(ve)
i — —a —a

mn+a-da(v,) |

®)

is ap x p matrix andM/; ; is a submatrix which is obtained froi¥; by deleting its last row and its last
column,1 < ¢ < r. The degrees of the vertex of K,. is equal tadg (v;) =r—1+b;, 1 <i < r. ltnow
suffices to compute the determinant of the maBiG). Following a procedure similar to that we applied

to the matrix)/;, we obtain:

n —Q

—a @ —a
det (B(G)) = (mn+a)P™"- )

_a _a DR q'f‘

= (mn+ @)’ " -det (D).

Recall thatg; = mn+a- (r —1+b;) — —2%—; see Equation (4). In order to compute the determinant

mn+a’

of ther x r matrix D we first multiply the first row ofD by —1 and add it to the: — 1 rows. Then, we
multiply columni by ‘311% 2 < i < r,and add it to the first column. Expanding in terms of the rofvs o

matrix D, we have that

det (D) = (1—azqiia> Tl @ +e).

=1

Thus, substituting the value dét (D) into Equation (5), we obtain the following theorem.
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Theorem 5.2 LetG = K, (b1, bo, ..., b,.) be a multi-star graph op = r + by + by + - - - + b, vertices.
Then,

(K™ 4+ G) =m- (mn)" P 2(mn +a)P™" (1 —«- Z 1 ) 'H(Qi +a),

g% +ao) =3

wherep < n,q; = mn +a- (r —1+b;) — —%— anda = +1 according toK" + G.

mn+ao

6 Concluding remarks

In this paper we derived determinant based formulas for tiraber of spanning trees of the family of
graphs of the forn¥* + G, and also for the more general family of graphig + G, whereK" (resp.
F™) is the complete multigraph om vertices with exactly (resp. at least) edges joining every pair of
vertices and~ is a multigraph spanned by a set of edge&{f (resp.K"). Based on these determinant
based formulas, we prove closed formulas for the numberarising trees (K" + G), in the case where
G is (i) a complete multipartite graph, and (ii) a multi-staagh.

In light of our results, it would be interesting to considiee tproblem of proving closed formulas for
the number of spanning tre€ K" + G) in the cases wher@ belongs to other classes of simple graphs
or multigraphs. Moreover, instead of a multigra@ghthat we have taken into account, we do not know
whether a generalazisation for an arbitrarily weightecbr@ holds.

The problem of maximizing the number of spanning trees whgeddor some families of graphs of
the form K,, — G, whereG is a multi-star graph, a union of paths and cycles, etc. (8e21], 19, 22]).
Thus, an interesting open problem is that of maximizing theber of spanning trees of graphs of the
form K" £ G.
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