S. D. Bedrosian, Generating formulas for the number of trees in a graph, Journal of the Franklin Institute, vol.277, issue.4, pp.313-326, 1964.
DOI : 10.1016/0016-0032(64)90448-X

N. Biggs, Algebraic Graph Theory, 1974.
DOI : 10.1017/CBO9780511608704

F. T. Boesch and H. Prodinger, Spanning tree formulas and chebyshev polynomials, Graphs and Combinatorics, vol.83, issue.1, pp.191-200, 1986.
DOI : 10.1007/BF01788093

T. J. Brown, R. B. Mallion, P. Pollak, and A. Roth, Some methods for counting the spanning trees in labelled molecular graphs, examined in relation to certain fullerenes, Discrete Applied Mathematics, vol.67, issue.1-3, pp.67-51, 1996.
DOI : 10.1016/0166-218X(96)85158-4

S. Chaiken, A Combinatorial Proof of the All Minors Matrix Tree Theorem, SIAM Journal on Algebraic Discrete Methods, vol.3, issue.3, pp.319-329, 1982.
DOI : 10.1137/0603033

K. Chung and W. Yan, On the number of spanning trees of a multi-complete/star related graph, Information Processing Letters, vol.76, issue.3, pp.76-113, 2000.
DOI : 10.1016/S0020-0190(00)00135-6

L. Clark, On the enumeration of spanning trees of the complete multipartite graph, Bull. Inst. Combin. Appl, vol.38, pp.50-60, 2003.

C. J. Colbourn, The combinatorics of network reliability, 1980.

D. M. Cvetkovi´ccvetkovi´c, M. Doob, and H. Sachs, Spectra of graphs, 1980.

B. Gilbert and W. Myrvold, Maximizing spanning trees in almost complete graphs, pp.23-30, 1997.

M. J. Golin, X. Yong, and Y. Zhang, Chebyshev polynomials and spanning tree formulas for circulant and related graphs, Discrete Math, pp.334-364, 2005.

M. C. Golumbic, Algorithmic graph theory and perfect graphs, 1980.

R. P. Lewis, The number of spanning trees of a complete multipartite graph, Discrete Math, pp.537-541, 1999.

W. Moon, Enumerating labeled trees, Graph Theory and Theoretical Physics, pp.261-271, 1967.

W. Myrvold, K. H. Cheung, L. B. Page, and J. E. Perry, Uniformly-most reliable networks do not always exist, Networks, vol.10, issue.4, pp.417-419, 1991.
DOI : 10.1002/net.3230210404

S. D. Nikolopoulos and C. Papadopoulos, The Number of Spanning Trees in Kn-Complements of Quasi-Threshold Graphs, Graphs and Combinatorics, vol.20, issue.3, pp.383-397, 2004.
DOI : 10.1007/s00373-004-0568-x

S. D. Nikolopoulos and P. Rondogiannis, On the number of spanning trees of multi-star related graphs, Information Processing Letters, vol.65, issue.4, pp.183-188, 1998.
DOI : 10.1016/S0020-0190(98)00008-8

L. Petingi, F. Boesch, and C. Suffel, On the characterization of graphs with maximum number of spanning trees, Discrete Math, pp.155-166, 1998.

H. N. Temperley, On the mutual cancellation of cluster integrals in Mayer's fugacity series, Proceedings of the Physical Society, vol.83, issue.1, pp.3-16, 1964.
DOI : 10.1088/0370-1328/83/1/302

L. Weinberg, Number of trees in a graph, Proc. IRE, pp.1954-1955, 1958.

W. Yan, W. Myrvold, and K. Chung, A formula for the number of spanning trees of a multi-star related graph, Information Processing Letters, vol.68, issue.6, pp.68-295, 1998.
DOI : 10.1016/S0020-0190(98)00175-6

Y. Zhang, X. Yong, and M. J. Golin, The number of spanning trees in circulant graphs, Discrete Math, pp.337-350, 2000.