Hyperbolic Delaunay Complexes and Voronoi Diagrams Made Practical

Mikhail Bogdanov 1 Olivier Devillers 1 Monique Teillaud 1
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : We study Delaunay complexes and Voronoi diagrams in the Poincaré ball, a conformal model of the hyperbolic space, in any dimension. We elaborate on our earlier work on the space of spheres [CCCG'92], giving a detailed description of algorithms. We also study algebraic and arithmetic issues, observing that only rational computations are needed. All proofs are based on geometric reasoning; they do not resort to any use of the analytic formula of the hyperbolic distance. This allows for an exact and efficient implementation in 2D. All degenerate cases are handled. The implementation will be submitted to the CGAL editorial board for future integration into the CGAL library.
Type de document :
Article dans une revue
Journal of Computational Geometry, Carleton University, Computational Geometry Laboratory, 2014, 5 (1), pp.56-85. 〈http://jocg.org/v5n1p4〉. 〈10.20382/jocg.v5i1a4〉
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-00961390
Contributeur : Olivier Devillers <>
Soumis le : jeudi 20 mars 2014 - 09:09:44
Dernière modification le : samedi 27 janvier 2018 - 01:30:42
Document(s) archivé(s) le : vendredi 20 juin 2014 - 10:50:12

Fichiers

141-629-1-PB.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Mikhail Bogdanov, Olivier Devillers, Monique Teillaud. Hyperbolic Delaunay Complexes and Voronoi Diagrams Made Practical. Journal of Computational Geometry, Carleton University, Computational Geometry Laboratory, 2014, 5 (1), pp.56-85. 〈http://jocg.org/v5n1p4〉. 〈10.20382/jocg.v5i1a4〉. 〈hal-00961390〉

Partager

Métriques

Consultations de la notice

514

Téléchargements de fichiers

229