Skip to Main content Skip to Navigation
Conference papers

Using n-grams models for visual semantic place recognition

Mathieu Dubois 1 Frenoux Emmanuelle 2 Philippe Tarroux 3
2 AMI - Architectures et Modèles pour l'Interaction
LIMSI - Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur : 247329
3 CPU
LIMSI - Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur
Abstract : The aim of this paper is to present a new method for visual place recognition. Our system combines global image characterization and visual words, which allows to use efficient Bayesian filtering methods to integrate several images. More precisely, we extend the classical HMM model with techniques inspired by the field of Natural Language Processing. This paper presents our system and the Bayesian filtering algorithm. The performance of our system and the influence of the main parameters are evaluated on a standard database. The discussion highlights the interest of using such models and proposes improvements.
Complete list of metadata

https://hal.inria.fr/hal-00962167
Contributor : Mathieu Dubois <>
Submitted on : Friday, March 21, 2014 - 1:05:57 AM
Last modification on : Thursday, December 10, 2020 - 12:31:15 PM
Long-term archiving on: : Saturday, June 21, 2014 - 10:37:41 AM

Files

Identifiers

  • HAL Id : hal-00962167, version 1
  • ARXIV : 1403.5370

Collections

Citation

Mathieu Dubois, Frenoux Emmanuelle, Philippe Tarroux. Using n-grams models for visual semantic place recognition. VISAPP, INSTICC, Feb 2013, Barcelona, Spain. ⟨hal-00962167⟩

Share

Metrics

Record views

380

Files downloads

366