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A framework for digital label images∗

Löıc Mazo

ICube, Université de Strasbourg, CNRS

Abstract

Digital label images – partitions of a discrete space – need a specific

topological model to take into account not only the topologies of the

regions but also the topology of the partition. In this article, we propose

a topological framework for label images in which all the regions of the

initial partition and of any coarser partition of the space can be explicitly

represented accordingly to any classical adjacency relation. Moreover,

we define a notion of simple point which enables atomic changes in the

partition without breaking any topology. Finally, we discuss about the

implementation of the framework.

1 Introduction

In this paper, we study, from a topological viewpoint, digital label images, that
is, images whose domain is Zn and whose codomains are sets on which there
generally exists no meaningful order relation (unlike grey-level images for in-
stance). Actually, a digital label image is nothing but a labelled partition of
Zn. Label images need a specific approach in topology. Indeed, a label image is
much more than a collection of independent objects and we are also interested
in the spatial relations between these objects. Thereby, any topologically sound
label image processing must pay attention to each object and to the partition
itself. Nevertheless, as far as we know, the literature devoted to the topology
of label images is not well developed and essentially oriented towards specific
applications. The most commonly used approach is to process one label at a
time while rejecting temporarily the other labels in the background, coming
down to a binary image (e.g. [15, 4, 10]). With this method, the topology of
the partition is generally ignored. Sometimes another structure, like a region
adjacency graph, is adjoined. But, except in 2D, this kind of structure can
rarely encompass all the topological information of the partition. Furthermore,
most of the time, in the applications (see, e.g., [14]) the value of the image on
a picture element changes from the background to a particular label, or vice
versa, but more seldom it goes from a label to another label. The approach
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proposed in [6] makes it possible to change the label of a point in a 3D cellular
space by choosing a new label among several ones with the assurance that the
homotopy types of the two labels, the new one and the former one, are pre-
served. Nevertheless, no attention is paid to the topology of the partition. To
take this latter topology in consideration, it is proposed in [7] to monitor the
boundaries between the regions. Besides the fact that the article is restricted
to the (6, 18)-adjacency pair in Z3 (for voxels and regions), it seems difficult
to bring out a theoretical model from this framework which mixes notions of
digital topology (geodesic neighborhoods), combinatorial topology (collapses on
cubical complexes) and discrete surfaces (sets of surfels). In order to take into
account the topology of the partition, it is required in [3] that the unions of
two labels (in 2D spaces), or two or three labels (in 3D spaces), are watched
in any process as well as single labels. However, a careful examination of the
examples provided by the authors shows that these conditions are not sufficient
to maintain the topology of the partition. In particular, the unions of three
labels should also be watched in a 2D space.

In a previous work [13], we have proposed an extensive theoretical frame-
work to deal with label images. In our model, we have retained the idea to
consider unions of objects of the initial partition together with the idea found
in [16, 17], to equip the set of labels with a lattice structure. In other words,
with this framework we propose to see a label image as an initial partition to-
gether with some meaningful coarser partitions whose labels are provided by the
lattice. Accordingly, we described in our previous article some kinds of simple
points for label images, that is points whose labels can be changed while pre-
serving the topologies (actually, the weak homotopy types) of the regions of all
these partitions. In order to use classical “continuous topology” (as opposed to
“discrete topology”), the label images are defined on a poset (partially ordered
set), typically the space of cubical complexes equipped with the inclusion, and
we use the Alexandroff-Birkhoff topology [1, 5].

Unfortunately, the model described in our previous work has an important
drawback at the first stage: the embedding of the digital space in a poset. If the
digital objects are not modeled by closed subsets of Rn (i.e. if the adjacency
relation for the objects is not the (3n − 1)-adjacency), the proposed embedding
cannot preserve the topology of each label. More precisely, we cannot generally
define, for each label of the lattice, isomorphisms between the discrete topology
structures and the continuous topology structures as illustrated on Figure 1. To
overcome this issue, we have been led to develop another model that we describe
in this article.

The remainder of this article is organized as follows. In Section 2, we define
the covering images, the kind of abstract image that we propose to model a label
digital image. In Section 3, we present a notion of simple point for covering
images, that is an atomic change on a label image that preserves the topologies
of the regions identified by the labels of the lattice. Section 4 explains how the
whole framework can be implemented and Section 5 concludes the paper.
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Figure 1: (Color online) Motivation for a new framework.
(a) A digital image λ in Z2 with 2 labels r (red), g (green) and a background
(not depicted). (b) The embedding of the image λ in F2, the space of cubical
2-complexes, obtained by applying the following membership rule: the label of
a 0-, or 1-, dimensional point is the infimum, in the lattice (2{r,g},⊆), of the
labels of the surrounding 2-dimensional points. We have proved in [12] that this
embedding preserves the connected components and the fundamental groups of
the object and its complement when a binary digital image is interpreted with
the (2n, 3n − 1)-adjacency pair. But, if we identify the two labels, that is if we
consider a coarser partition of the space, the topology is not the same on these
two images (we have one component on the left and two components on the
right).

2 Covering images

In order to model all the topological relations that can be found in a digital
label image λ (defined on Zn), we propose two steps.

1. We split the image λ in a collection of binary images such that each bi-
nary image represents a region of interest, that is a region that has been
previously labelled (for instance during a segmentation process) or repre-
sents a meaningful union of some labeled regions. The unions are labeled
thanks to a lattice structure on labels: the label of an union of regions is
the supremum of the labels of the regions. No other labels are needed for
our purpose, so the lattice of labels, noted T , is an atomistic finite lattice1

whose atoms are the initial labels that we call proto-labels and there is
a one-to-one correspondence between this lattice and the collection of bi-
nary images (we write λt for the binary image associated to the label t in
the collection built from the digital label image λ). Figure 2 exemplifies
this first stage (in the sequel, the infimum and supremum operators on T
are denoted ∧ and ∨ while ⊥ and ⊤ are the minimum and the maximum
of T ; furthermore, for any t ∈ T , we write A(t) for the set of atoms under
t).

2. In each binary digital image λt created in the previous step, we introduce
inter-xels elements (pointels, linels, surfels and so on) to have a topology
available. The space in which we embed the digital images is the space of
nD cubical complexes, Fn, but it could be another cellular decomposition

1A lattice is atomistic if any element, but the minimum, is a supremum of atoms.
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Figure 2: (Color online) A lattice of binary images associated to a label image.
(a) A digital label image with five (proto-)labels c, y, b, r, g respectively depicted
in cyan, yellow, blue, red and green. (b) A lattice structure T whose atoms are
c, y, b, r, g. (c-j) The collection of binary images associated to the lattice T (the
binary image associated to ⊥ is not represented for it is a constant image, with
no object).

of the space2. The inter-xels elements must be labeled with membership
rules with respect to the desired interpretation of the image. Such rules
can be found in the literature (see e.g. [2]). We have proposed in [12] our
own rules which preserve the connected components for the classical ad-
jacency pairs and result in isomorphisms between the digital fundamental
groups as defined by Kong [8] and the usual fundamental groups of the
regions of Fn. Our rules are defined as follows. If x, y, z ∈ Fn are three
points such that x is incident to y and z, dim(y) = dim(z) = dim(x) + 1
and y and z are not incident to the same xel, we say that y and z are

2A formal description of Fn can be found in [13] but no knowledge of cubical complexes is
needed to understand the remainder of the article.
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opposite with respect to the point x and we denote by opp(x) the set of
all pairs {y, z} for y opposite to z with respect to x (see Figure 3). Finally,

(a) (b) (c)

Figure 3: (Color online) Opposite points.
Two opposite points in F3 with respect to (a) a 2-point, (b) a 1-point, (c) a
0-point. The dashed boxes in (b) and (c) show other pairs of opposite points.

for a sequence ε of n elements in {−1, 1}, we define the ε-regular (binary)
image µt by µt(x) = λt(x) if x is a xel (dim(x) = n) and, otherwise,

µt(x) =

{

inf{sup{µt(a), µt(b)} | {a, b} ∈ opp(x)} if ε(m+ 1) = 1
sup{inf{µt(a), µt(b)} | {a, b} ∈ opp(x)} if ε(m+ 1) = −1

where m = dim(x) and ε(i) denotes the i-th element of the sequence
ε. For instance, to extend on F2 a digital image initially defined on Z2,
we set ε = (−1,−1) if the image has to be interpreted with the (4, 8)-
adjacency pair, or ε = (1, 1) if the image has to be interpreted with the
(8, 4)-adjacency pair (the sequences (1,−1) and (−1, 1) correspond respec-
tively to sections of 3D-images equipped with the (6, 18)-, or the (18, 6)-,
adjacency pair). Note that distinct rules can be applied to distinct la-
bels provided no inconsistency is introduced: for instance, if two voxels
are connected in the region R, they cannot be disconnected in a region
including R; this leads us to the notion of fiber described below.

After these two steps have been achieved, we get a collection (µt)t∈T (actu-
ally a lattice) of binary images, the sheets, defined on Fn (see Figure 4). Now,
we can see this collection of binary images as a unique image µ by setting that
µ(x) is equal to the set (we say the fiber) whose elements are the labels t such
that µt(x) = 1 (in other words, the labels attached to x, or, equivalently, the
regions of interest x belongs to). For instance, let x0 be the horizontal linel
between the label r (red) and the label g (green) on Figure 2(a). If we set
ε = (−1,−1), we find that µr(x0) = {

∨

{b, r, g},⊤} while setting ε = (1, 1),
we find that µr(x0) = {{r}, {g},

∨

{b, r, g},⊤} (provided the same membership
rule is applied on all the sheets). When a point in Fn has not been labeled, for
instance, a point in the infinite region surrounding the image, then its fiber is
set to ∅. Since the region obtained by identifying two labels t and u, that is, the
region associated to the supremum of the labels t and u, contains all the points
that are in the region t or in the region u plus, possibly, some other ponts (like
the point x0 when ε = (−1,−1) and we take for t the red label and for u the
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Figure 4: Adjacency pairs and ε-regularity.
The sheet µr associated to the label r of the digital label image depicted on
Figure 2. (a) The sequence ε is equal to (−1,−1) which corresponds to the
choice of the (4, 8)-adjacency pair (the object of the binary image is open, it
does not include its boundary). (b) The sequence ε is equal to (1, 1) which
corresponds to the (8, 4)-adjacency pair (the object is closed so it includes its
boundary).

green one), the fibers are up-sets (or filters), that is for any fiber S,

t ∈ S and t ≤ u ⇒ u ∈ S.

We write t↑ for the upset generated by a label t (t↑ = {u ∈ T | t ≤ u})
– such a set is called a principal upset (or principal filter) – and we write GT

for the family of the up-sets over the lattice T : GT =
{
⋃

t∈A t↑ | A ⊆ T
}

=
{

⋃

t∈A

⋂

u∈A(t) u
↑ | A ⊆ T

}

. Note that ∅ ∈ GT .

Eventually, we can define a covering image.

Definition 1 (Covering image). Let T be an atomistic finite lattice. A covering
image µ is a function from Fn to GT . For any t ∈ T , the sheet µt is the binary
image defined on Fn by µt(x) = 1 if t ∈ µ(x) and µt(x) = 0 otherwise. For any
x ∈ Fn, the set µ(x) is the fiber over x. A covering image is ε-regular if for
any t ∈ T the sheet µt is ε-regular.

Thanks to the next proposition, a ε-regular covering image µ can be defined
without resorting to the sheets µt, t ∈ T . This is an important point for the
implementation since it enables the encoding of a regular covering image directly
from a digital label image (see Section 4).

Proposition 1. Let T be an atomistic lattice and ε a sequence of n elements
in {−1, 1}. A covering image µ : Fn → GT is ε-regular iff, for all x ∈ Fn such
that dim(x) < n:

µ(x) =

{
⋂

{a,b}∈opp(x) µ(a) ∪ µ(b) if ε(dim(x) + 1) = 1
⋃

{a,b}∈opp(x) µ(a) ∩ µ(b) if ε(dim(x) + 1) = −1.

Proof. Let us assume that dim(x) = m − 1 and ε(m) = 1. Then, from Defi-
nition 1, for all label t ∈ T , one has µt(x) = inf{sup{µt(a), µt(b)} | {a, b} ∈
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opp(x)}. Thereafter,

t ∈ µ(x) ⇔ µt(x) = 1

⇔ ∀{a, b} ∈ opp(x), µt(a) = 1 or µt(b) = 1

⇔ ∀{a, b} ∈ opp(x), t ∈ µ(a) ∪ µ(b)

⇔ t ∈
⋂

{a,b}∈opp(x)

µ(a) ∪ µ(b).

The case ε(m) = −1 is similar.

Let t ∈ T be a label. The set 〈t〉µ = µ−1
t ({1}) is the support of t in the

covering image µ. Thereby, the expressions x ∈ 〈t〉µ, µt(x) = 1 and t ∈ µ(x) are
synonymous. We write 〈t〉cµ for the set Fn \ 〈t〉µ. When there is no ambiguity,
we write also 〈t〉 and 〈t〉c instead of 〈t〉µ and 〈t〉cµ. The set 〈⊤〉c = µ−1(∅) is
the background of µ. The support 〈⊥〉 contains the points in Fn that are in the
supports of every labels, in particular every proto-labels. Thus 〈⊥〉 is empty
in a covering image obtained from a digital label image (since a digital label
image is a partition of Zn, or a partition of a finite region of Zn). Nevertheless,
thanks to 〈⊥〉, the dual of a covering image, defined by swapping the foreground
and the background in each sheet of the image, is a covering image for the dual
order on the lattice T , provided the lattice T is a power set lattice (otherwise,
T is not atomistic for its dual order).

3 Simplicity

First, we recall some definitions and properties of the Alexandroff-Birkhoff
topology of the cubical complexes. A more detailed presentation of these notions
of topology can be found in our previous work on label images [13].

We write B(x) for the boundary of the face x, N(x) for the set of faces
in Fn whose boundary contains x. A point x ∈ Fn is unipolar if N(x) has a
minimum (for the incidence relation) or B(x) has a maximum. A subset X of
Fn is contractible (it has the homotopy type of a point) iff it can be shrunk to
a unique point by a sequential (and greedy) removal of unipolar points.

In a binary image, a point x in the object is simple if its removal from the
object “preserves topology” [9]. Since a covering image is a collection of binary
images (the sheets), we can extend the notion of simple point to covering images:
roughly speaking, in a covering image, a point is simple for a fiber S if it is simple
in any sheet modified by the assignment µ(x) = S. In our framework, we use
β-simple points. A point x ∈ Fn is a β-simple point for a subset X of Fn if
one of the sets N(x) ∩X or B(x) ∩X is contractible. The β-simple points have
the advantage to preserve topology twice. Indeed, in the one hand, Fn can be
equipped with the Alexandroff-Birkhoff topology whose open sets are the up-
sets of Fn. Then, the deletion of a β-simple point x from a subset X of Fn is
a weak homotopy equivalence, that is, the inclusion i : X \ {x} → X induces
a one-to-one correspondence between the connected components of both spaces
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and induces also isomorphisms between the homotopy groups of X \{x} and X.
Moreover, this is also true for the dual inclusion i′ : Fn \X → Fn \ (X \ {x}).
On the other hand, one can associate to any subset X of Fn an Euclidean set,
denoted |K(X)|, which is the realization of a simplicial complex. The deletion
from X of a β-simple point x induces a strong deformation retraction from
|K(X)| to |K(X \ {x})|. Furthermore, this is also true for the complements (in
Rn) of these realizations but, possibly, in a non-monotonic manner.

Eventually, we can give the definition of a simple point in a covering image.

Definition 2 (Simple point). Let S ∈ GT be a fiber. A point x ∈ Fn is simple
for (the fiber) S if the following two conditions are verified:

(i) for any label u ∈ µ(x) such that u /∈ S, x is β-simple for the set 〈u〉 or for
the set 〈u〉c ∪ {x};

(ii) for any label u /∈ µ(x) such that u ∈ S, x is β-simple for the set 〈u〉 ∪ {x}
or for the set 〈u〉c.

The previous definition, and the properties of β-simple points, ensures that,
if a point is simple for the fiber S in the image µ, we can set µ(x) = S while
preserving the topology of any region of interest, including the unions pointed
out by the choice of the lattice T . Moreover, since the β-simplicity of a point
x relies only on the examination of the sets N(x) and B(x), modifications of
fibers over points in Fn having the same dimension can be done in parallel,
leading to well-balanced algorithms. Figure 5 gives some examples of thinnings,
or growings, on a covering image using simple points.

Observe that most of the time the use of simple points to modify a cover-
ing image will lose the regularity of the image and will disable the possibility
to extract from the covering image a digital label image (defined on Zn) in a
topologically sound manner (Figure 6 illustrates this point). Keeping the pos-
sibility to go back to Zn is a difficult issue. Some results can be found in our
Ph.D. thesis [11], in French, but they concern only three dimensional images
equipped with the (6, 18) adjacency pair, or its dual, and the statements are
really tedious (fortunately, the implementation has turned out to be less painful
than the statements and the proofs).

4 Implementation

In this section, we discuss the implementation of the framework.
We need to encode the lattice T , the fibers and some operations or predicates

on fibers (at least union, intersection, is included in). Since the lattice T is
atomistic, it is natural to encode the atoms, the proto-labels of the initial digital
image, with a single bit in a bit field. Then the other labels in T can be encoded
by a bitwise OR on the codes of the atoms of which they are the supremum.
Table 1 gives the codes for the labels in the lattice T1 defined on Figure 5.

In the sequel, we write [t] for the bit field representation of the label t.
When the lattice T is the power set of the proto-labels, the supremum, resp. the
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(a) (b) (c)

⊤

g ∨ o ∨{y, r, p}

b g o y r p

⊥
(d) Lattice T1

⊤

b g o y r p

⊥
(e) Lattice T2

Figure 5: (Color online) Thinning and growing using simple points.
(a) A label image λ defined on Z2. There are six proto-labels: b (blue), g
(green), o (orange), y (yellow), r (red) and p (pink). (b) The image λ has
been transformed in a ε-regular covering image µ (with the sequence ε = (1, 1),
which is associated to the (8, 4)-adjacency pair, and the proto-label power set
lattice) then the support of the green label has been shrunk by use of simple
points. More precisely, for each point x whose fiber µ(x) has a minimal element
greater than the green proto-label, we look for a fiber S in its neighborhood
that have all its minimal elements not greater than the green label. Then, if x
is simple for S, we set µ(x) = S. (c-e) The image λ has been transformed in a
ε-regular covering image µ with the sequence ε = (−1,−1) and the proto-label
power set lattice (Figure (c)), the lattice T1 (Figure (d)), the minimal lattice T2

(Figure (e)). Then we have grown the background: for each point x that has a
non-empty fiber and that is simple for the empty fiber, we set µ(x) = ∅.
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(a) (b)

Figure 6: (Color online) From Fn to Zn: loss of topological information.
(a) A Covering image µ (same as Figure 5(e)). (b) The image defined on Zn

extracted from the covering µ. The topologies of the red set (for instance) is
not the same on the two images.

Label ⊥ b g o y
Code 000000 000001 000010 000100 001000

Label r p g ∨ o
∨

{y, r, p} ⊤
Code 0100000 100000 000110 111000 111111

Table 1: Label encoding for the lattice T1 defined on Figure 5.

infimum, of a pair of labels is obtained by an OR, resp. an AND, operation on
the codes of the two labels. Otherwise, we need an ordered list L of the elements
of T for the order defined by the number of atoms, then the lexicographic order
on the codes. For instance, the ordered list L for the lattice T1 (Figure 5) is the
one induced by Table 1. The code of the supremum of two labels t and u is the
smallest element in the list L greater than the bitwise OR of [t] and [u]. Alike,
the code of the infimum of t and u is the greatest element in the list L smaller
than the bitwise AND of [t] and [u].

The fibers are unions of principal upsets t↑, t ∈ T . The upset t↑ is encoded
as the label t. In other words, an upset is encoded by the code of its minimal
element. The other non-empty fibers, which are unions of principal upsets, are
encoded as ordered lists of principal upsets (for the same order used for the list
L). For a regular image, the length of the list depends on the choice of the
adjacency relation and on the number of distinct labels in the neighborhood.
For the digital image of Figure 5(a), the mean length of the lists of the ε-regular
covering image is 1.13 when ε = (1, 1) and all the fibers are principal upsets
when ε = (−1,−1). We need also a code for the empty fiber. Observe that in
Table 1 the bit field 000000 codes the label ⊥, or the fiber T = ⊥↑. Hence, it
cannot be used to code the empty set. This is the reason why we adjoin another
bit. Then, the bit field 1 . . . 1 (all bits set to ’1’) codes the empty set (the greater
the code, the lesser the fiber).

10



To obtain a regular image from an initial digital label image, we need to
compute iteratively unions and/or intersections of fibers (see Definition 1). The
unions are performed by concatenating the lists of principal upsets and reorder-
ing. Moreover, from the list we delete the principal upsets that are included in
an other element of the list: a principal upset t↑ is included in the upset u↑ iff
the bit field ([t] AND [u]) is equal to [u]. The code of the intersection of two
principal upsets t↑ and u↑ is the code of the supremum of the labels t and u
(for t↑∩u↑ = (t ∨ u)

↑
). To intersect two fibers, we compute all the intersections

of their principal upsets, delete the unnecessary elements and sort the resulting
list.

The extraction of a sheet µt (t ∈ T ) is done by testing for each x ∈ Fn

whether t↑ is included in some principal upset u↑ ∈ µ(x) .
To test whether a point x is simple for a fiber S, we have to examine the sets

N(x) and B(x) in each sheet µt where t ∈ (µ(x) \S)∪ (S \µ(x)). This implies,a
priori, to scan the lattice T , check whether each label is in µ(x) and not in S, or
the converse, and, when the answer is positive, to look over the neighborhood of
the face x in the selected sheet. If the lattice is the power set of a large amount
of proto-labels, this could be long. Fortunately, the following proposition allows
us to scan only a subset of the lattice T . The idea is that atoms that cannot be
detected in the neighborhood of the point x are not ‘useful’ for the simplicity
test. Hence, we collect all the atoms in the neighborhood of x together with
those in S, that is we make an ‘OR’ on all the bit fields (but the empty set). Let
A be the result. Clearly, for each point y in the neighborhood of x and for each
minimal element v of µ(y), we have A(v) ⊆ A. Then, thanks to Proposition 2,
we can ignore the atoms that are not in A since, for each label t such that
A(t) * A, there exists a label u in the sublattice of T generated by the atoms
in A such that the two sheets µt and µu coincide in the neighborhood of x. In a
standard label image, the test falls down to inspect labels which are supremums
of very few atoms.

Proposition 2. Let A ⊂ A(⊤) be a set of atoms in T and b ∈ A(⊤) be an atom
not in A. Then, for any t ∈ T such that b ∈ A(t), there exists a label u ∈ T
such that

• u ∈ {
∨

A′ | A′ ⊆ A} ;

• for any fiber S such that, for any minimal element v ∈ S, A(v) ⊆ A, we
have t ∈ S ⇔ u ∈ S.

Proof. Let t be a label such that b ∈ A(t). We set A(t) = A0∪B where A0 ⊆ A
and B ∩A = ∅ (obviously, we have b ∈ B). We set u =

∨

A0 (thus u 6 t). It is
plain that u ∈ {

∨

A′ | A′ ⊆ A}.
Let S be a fiber such that, for any minimal element v ∈ S, A(v) ⊆ A. If

u ∈ S, then t ∈ S (for u 6 t and S is a fiber). Conversely, let us assume
that t ∈ S. Let s be a minimal element in S such that s 6 t. Clearly, we
have A(s) ⊆ A(t). Since, by hypothesis, A(s) ⊆ A, we derive that A(s) ⊆ A0.
Hence, s 6 u. Thus, u ∈ S.
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5 Conclusion

The model presented in this paper gives a way to encompass all the topological
relations that characterize a label image. It provides a notion of simple point
for a label which is based on solid foundations. From a theoretical point of view,
it can help us to check what is precisely preserved or modified by a procedure.
Furthermore, though the complexity of a label image (with all the intra-labels
and inter-labels relations) is much higher than the complexity of a single object,
we have seen that the implementation of a space of fibers can be done in an
efficient way.

The next step will be to find procedures to get a regular covering image from
a non-regular one. This will allow the extraction of a label image defined on Zn

homotopically equivalent to a given covering image.

We would like to thank Professor C. Ronse who kindly reread this manu-
script.
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