Vertex Deletion for 3D Delaunay Triangulations
Kevin Buchin, Olivier Devillers, Wolfgang Mulzer, Okke Schrijvers, Jonathan Shewchuk

- To cite this version:

Kevin Buchin, Olivier Devillers, Wolfgang Mulzer, Okke Schrijvers, Jonathan Shewchuk. Vertex Deletion for 3D Delaunay Triangulations. ACM. Symposium on Theory of Computing, 2013, Palo Alto, United States. 2013. hal-00963520

HAL Id: hal-00963520
https://inria.hal.science/hal-00963520
Submitted on 21 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Vertex Deletion for 3D Delaunay Triangulations

Kevin Buchin TU Eindhoven

k.a.buchin@tue.nl

Olivier Devillers
INRIA Sophia Antipolis
olivier.devillers@inria.fr

Wolfgang Mulzer
Freie Universität Berlin

mulzer@inf.fu-berlin.de

Okke Schrijvers
Stanford University
okkes@cs.stanford.edu

Jonathan Shewchuk
UC Berkeley
jrs@cs.berkeley.edu

DELAUNAY TRIANGULATIONS

The Delaunay triangulation (DT) of a point set is a triangulation of the convex hull such that the circumcircle of each triangle contains no other points (Fig. 1).
It is a classic structure in Computational Geometry and is used for instance for interpolation in Graphics and Scientific Computing.
We focus on deletions: given $D T(S)$ and a point $q \in S$, find $D T(S \backslash q)$. In 2D, there exist both theoretically and practically fast algorithms. The best known 3D algorithm runs in $O(d \log d+C(P))$ with $d=\operatorname{deg}(q)$, P the set of incident vertices and $C(P)$ is the structural cost of construction with a RIC. We reduce this to $O\left(d+C^{\otimes}(P)\right)$ with $O\left(C^{\otimes}(P)\right) \leq O(C(P))$.

TRIANGULATE AND SEW

In previous work, "Triangulate and Sew" retriangulates the vertices incident to q and sews this result into the original triangulation. This process is shown in Fig. 2.

We reduce the point location time for the retriangulation by using information of the connectivity in the original triangulation.

We reduce the structural complexity by identifying and preventing the creation of simplices that would be discarded when sewed back into the triangulation.

Fig. 2. Approach for deletions.

ALGORITHM

We apply the "reverse deletion trick" to delete point q.

On top, we remove points one-by-one in the lower-dimensional Link DT: $D T^{\ell}(Q)$, storing guides in the process.

We then reconstruct using the guides and the Conflict DT: $D T_{q}^{\otimes}(P)$, preventing unnecessary simplices from being created.

地

