R. Arratia, A. D. Barbour, and S. Tavaré, Logarithmic Combinatorial Structures: A Probabilistic Approach, EMS Monographs in Mathematics. European Mathematical Society (EMS), 2003.
DOI : 10.4171/000

G. Bennet, Probability Inequalities for the Sum of Independent Random Variables, Journal of the American Statistical Association, vol.18, issue.297, pp.33-45, 1962.
DOI : 10.1214/aoms/1177730437

S. Boucheron, G. Lugosi, and P. Massart, A sharp concentration inequality with applications. Random Struct, Algorithms, vol.16, issue.3, pp.277-292, 2000.

S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities using the entropy method, Ann. Probab, vol.31, issue.3, pp.1583-1614, 2003.

N. Broutin and L. Devroye, Large Deviations for the Weighted Height of an Extended Class of Trees, Algorithmica, vol.46, issue.3-4, 2005.
DOI : 10.1007/s00453-006-0112-x

H. Chern and H. Hwang, Phase changes in random m-ary search trees and generalized quicksort, Random Struct. Algorithms, vol.19, pp.3-4, 2001.

L. Devroye, Laws of large numbers and tail inequalities for random tries and PATRICIA trees, Journal of Computational and Applied Mathematics, vol.142, issue.1, pp.27-37, 2002.
DOI : 10.1016/S0377-0427(01)00458-7

J. A. Fill and S. Janson, Quicksort asymptotics, Journal of Algorithms, vol.44, issue.1, pp.4-28, 2002.
DOI : 10.1016/S0196-6774(02)00216-X

W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables, Journal of the American Statistical Association, vol.1, issue.301, pp.13-30, 1963.
DOI : 10.1214/aoms/1177730491

H. Hwang and R. Neininger, Phase Change of Limit Laws in the Quicksort Recurrence under Varying Toll Functions, SIAM Journal on Computing, vol.31, issue.6, pp.31-1687, 2002.
DOI : 10.1137/S009753970138390X

S. Janson and P. Chassaing, The Center of Mass of the ISE and the Wiener Index of Trees, Electronic Communications in Probability, vol.9, issue.0, pp.178-187, 2004.
DOI : 10.1214/ECP.v9-1088

URL : https://hal.archives-ouvertes.fr/hal-00005089

R. M. Karp, Probabilistic recurrence relations, Journal of the ACM, vol.41, issue.6, pp.1136-1150, 1994.
DOI : 10.1145/195613.195632

Y. Kasahara, Tauberian theorems of exponential type, Journal of Mathematics of Kyoto University, vol.18, issue.2, pp.209-219, 1978.
DOI : 10.1215/kjm/1250522571

G. Lugosi, Concentration of measure inequalities, 2005.

H. M. Mahmoud, Evolution of Random Search Trees. Wiley-Interscience Series in Discrete Mathematics and Optimization, 1992.

C. Mcdiarmid, Concentration, Probabilistic Methods for Algorithmic Discrete Mathematics, pp.195-248, 1998.
DOI : 10.1007/978-3-662-12788-9_6

R. Motwani and P. Raghavan, Randomized Algorithms, 1995.

R. Neininger, On binary search tree recursions with monomials as toll functions, Journal of Computational and Applied Mathematics, vol.142, issue.1, pp.185-196, 2002.
DOI : 10.1016/S0377-0427(01)00468-X

R. Neininger, Recursive random variables with subgaussian distributions, Statistics & Decisions, vol.23, issue.2/2005, pp.131-146, 2005.
DOI : 10.1524/stnd.2005.23.2.131

R. Neininger and L. Rüschendorf, A general limit theorem for recursive algorithms and combinatorial structures, Ann. Appl. Probab, vol.14, issue.1, pp.378-418, 2004.

R. Neininger and L. Rüschendorf, On the contraction method with degenerate limit equation, Ann. Probab, vol.32, issue.3B, pp.2838-2856, 2004.

S. T. Rachev and L. Rüschendorf, Probability metrics and recursive algorithms, Advances in Applied Probability, vol.II, issue.03, pp.770-799, 1995.
DOI : 10.1214/aop/1176992167

U. Rösler, A limit theorem for ???quicksort???, RAIRO - Theoretical Informatics and Applications, vol.25, issue.1, pp.85-100, 1991.
DOI : 10.1051/ita/1991250100851

U. Rösler, A fixed point theorem for distributions. Stochastic Process, Appl, vol.42, issue.2, pp.195-214, 1992.

U. Rösler, On the analysis of stochastic divide and conquer algorithms, Algorithmica, vol.7, issue.1-2, pp.238-261, 2001.
DOI : 10.1007/BF02679621

E. Schopp, Stochastische Fixpunktgleichungen, exponentielle tail Abschätzungen und large deviation für rekursive Algorithmen, 2005.

R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, 1996.

W. Szpankowski, Average Case Analysis of Algorithms on Sequences. Wiley-Interscience Series in Discrete Mathematics and Optimization, 2001.