N. Of and N. Nichd, We also thank NSF for their support of many students traveling to the BCI Meeting

G. Mueller-putz, F. Nijbor, B. Pesaran, N. Ramsey, G. Schalk et al., Jon Wolpaw Workshop M7: Non-invasive BCI-control of grasp neuroprosthesis in high spinal cord injured humans

E. Friedrich and D. , Moritz Grosse-Wentrup as well as the other speakers

J. Wander, Finally we would like to thank all the participants for the inspiring and insightful discussions that occurred during the workshop

M. Workshop, BCIs for Neurodevelopmental Disorders. I would like to thank all the presenters presented at the M6 workshop: Scott Makeig

T. Townsend, L. Jung, and . Chukoskie, Jonathan Tarbox, and Armin Schnürer as well as the participants for the informative and lively discussions. I would like to acknowledge Elizabeth Friedrich, Cathrine Dam (EGI net) and Robin Johnson (ABM) for actively participating in the workshop

J. Wolpaw, N. Birbaumer, W. Heetderks, D. Mcfarland, P. Peckham et al., Brain-computer interface technology: a review of the first international meeting, IEEE Transactions on Rehabilitation Engineering, vol.8, issue.2, pp.164-73, 2000.
DOI : 10.1109/TRE.2000.847807

T. Vaughan, W. Heetderks, L. Trejo, W. Rymer, M. Weinrich et al., Guest editorial brain-computer interface technology: a review of the second international meeting, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.11, issue.2, pp.94-109, 2003.
DOI : 10.1109/TNSRE.2003.814799

T. Vaughan and J. Wolpaw, The third international meeting on brain-computer interface technology: Making a difference, IEEE Trans Neural Syst Rehabil Eng, 2006.

T. Vaughan and J. Wolpaw, Special issue containing contributions from the Fourth International Brain???Computer Interface Meeting, Journal of Neural Engineering, vol.8, issue.2, 2011.
DOI : 10.1088/1741-2560/8/2/020201

G. Frye, C. Hauser, G. Townsend, and E. Sellers, Suppressing flashes of items surrounding targets during calibration of a P300-based brain???computer interface improves performance, Journal of Neural Engineering, vol.8, issue.2, p.25024, 2011.
DOI : 10.1088/1741-2560/8/2/025024

E. Sellers, New horizons in brain-computer interface research, Clinical Neurophysiology, vol.124, issue.1, p.2013
DOI : 10.1016/j.clinph.2012.07.012

D. Klobassa, T. Vaughan, P. Brunner, N. Schwartz, J. Wolpaw et al., Toward a high-throughput auditory P300-based brain???computer interface, Clinical Neurophysiology, vol.120, issue.7, pp.1252-61, 2009.
DOI : 10.1016/j.clinph.2009.04.019

J. Mak, D. Mcfarland, T. Vaughan, L. Mccane, P. Tsui et al., EEG correlates of P300-based brain???computer interface (BCI) performance in people with amyotrophic lateral sclerosis, Journal of Neural Engineering, vol.9, issue.2, 2012.
DOI : 10.1088/1741-2560/9/2/026014

T. Kaufmann, S. Schulz, C. Grunzinger, and A. Kubler, Flashing characters with famous faces improves ERP-based brain???computer interface performance, Journal of Neural Engineering, vol.8, issue.5, p.056016056016, 2011.
DOI : 10.1088/1741-2560/8/5/056016

T. Kaufmann, S. Schulz, A. Koblitz, G. Renner, C. Wessig et al., Face stimuli effectively prevent brain???computer interface inefficiency in patients with neurodegenerative disease, Clinical Neurophysiology, vol.124, issue.5, pp.893-900, 2013.
DOI : 10.1016/j.clinph.2012.11.006

G. Townsend, J. Shanahan, D. Ryan, and E. Sellers, A general P300 brain-computer interface presentation paradigm based on performance guided constraints. Neurosci Lett, pp.63-71, 2012.

A. Kubler, D. Mattia, R. Rupp, and M. Tangermann, Facing the challenge: Bringing brain???computer interfaces to end-users, Artificial Intelligence in Medicine, vol.59, issue.2, pp.55-60, 2013.
DOI : 10.1016/j.artmed.2013.08.002

C. Zickler, A. Riccio, F. Leotta, S. Hillian-tress, S. Halder et al., A Brain-Computer Interface as Input Channel for a Standard Assistive Technology Software, Clinical EEG and Neuroscience, vol.4, issue.5, pp.236-280, 2011.
DOI : 10.1177/155005941104200409

T. Vaughan, E. Sellers, and J. Wolpaw, Clinical Evaluation of BCIs, Brain-Computer Interfaces: Principles and Practice
DOI : 10.1093/acprof:oso/9780195388855.003.0020

E. Sellers, T. Vaughan, and J. Wolpaw, A brain-computer interface for long-term independent home use, Amyotrophic Lateral Sclerosis, vol.177, issue.5, pp.449-55, 2010.
DOI : 10.1212/01.wnl.0000205136.93011.4e

N. Neumann and A. Kubler, Training locked-in patients: a challenge for the use of brain~computer interfaces, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.11, issue.2, pp.169-72, 2003.
DOI : 10.1109/TNSRE.2003.814431

C. Zickler, S. Halder, S. Kleih, C. Herbert, and A. Kubler, Brain Painting: Usability testing according to the user-centered design in end users with severe motor paralysis, Artificial Intelligence in Medicine, vol.59, issue.2, pp.99-110, 2013.
DOI : 10.1016/j.artmed.2013.08.003

A. Kübler, E. Holz, T. Kaufmann, and C. Zickler, A User Centred Approach for Bringing BCI Controlled Applications to End-Users, Brain-Computer Interface Systems, 2013.
DOI : 10.5772/55802

E. Holz, J. Hohne, P. Staiger-salzer, M. Tangermann, and A. Kubler, Brain???computer interface controlled gaming: Evaluation of usability by severely motor restricted end-users, Artificial Intelligence in Medicine, vol.59, issue.2, pp.111-131, 2013.
DOI : 10.1016/j.artmed.2013.08.001

A. Riccio, F. Leotta, L. Bianchi, A. F. Zickler, C. Hoogerwerf et al., Workload measurement in a communication application operated through a P300-based brain???computer interface, Journal of Neural Engineering, vol.8, issue.2, 2011.
DOI : 10.1088/1741-2560/8/2/025028

E. Holz, T. Kaufmann, L. Desideri, M. Malavasi, E. Hoogerwerf et al., User Centred Design in BCI Development, Towards Practical Brain-Computer Interfaces, pp.155-72, 2013.
DOI : 10.1007/978-3-642-29746-5_8

T. Kaufmann, E. Holz, and A. Kubler, Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state, Frontiers in Neuroscience, vol.7, p.129, 2013.
DOI : 10.3389/fnins.2013.00129

E. Holz, L. Botrel, T. Kaufmann, and A. Kübler, Independent BCI home-use improves quality of life of a patient in the locked-in state (ALS): A long-term study, Arch Phys Med Rehab. 2014 Special Issue on the 5th International BCI Meeting

E. Holz, L. Botrel, T. Kaufmann, and A. Kübler, Long-Term Independent BCI Home-Use by a Locked-In End-User: An Evaluation Study, Proceedings of the 5th International Brain-Computer Interface Meeting, 2013.

. Alles-ist-möglich-?-mein-hirn and ]. Internet, Available from

A. Kübler, E. Holz, E. Sellers, and T. Vaughan, Toward independent home use of BCI: A decision algorithm for selection of potential end-users, Arch Phys Med Rehab, 2014.

D. Beukelman and P. Mirenda, Augmentative and Alternative Communication, 2013.

L. Lloyd, . Fuller, . Dr, and H. Arvidson, Augmentative and Alternative Communication: A handbook of principles and practices, 1997.

J. Millan, R. Rupp, G. Muller-putz, R. Murray-smith, C. Giugliemma et al., Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges, Frontiers in Neuroscience, vol.1, pp.10-3389, 2010.
DOI : 10.3389/fnins.2010.00161

M. Scherer, Assistive technology: matching device and consumer for successful rehabilition, 2002.
DOI : 10.1037/10420-000

J. Light, Interaction involving individuals using augmentative and alternative communication systems: State of the art and future directions, Augmentative and Alternative Communication, vol.4, issue.2, pp.66-82, 1988.
DOI : 10.1080/07434618512331273651

G. White, M. Suchowierska, and M. Campbell, Developing and systematically implementing participatory action research, Arch Phys Med Rehabil, vol.85, issue.4, 2004.

J. Huggins, P. Wren, and K. Gruis, What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis, Amyotrophic Lateral Sclerosis, vol.55, issue.5, 2011.
DOI : 10.1016/S0022-510X(97)00253-0

G. Bieker, G. Noethe, and M. Fried-oken, Locked-in and reaching new heights. Speak Up, publication of the United States Society for Augmentative and Alternative Communication, pp.3-6, 2011.

B. Peters, G. Bieker, M. Fried-oken, S. Hartman, J. Huggins et al., BCI users speak up: Feedback on brain-computer interface systems for people with disabilities, Archives of Physical Medicine & Rehabilitation, p.2014

G. Schalk, D. Mcfarland, T. Hinterberger, N. Birbaumer, and J. Wolpaw, BCI2000: A General-Purpose Brain-Computer Interface (BCI) System, IEEE Transactions on Biomedical Engineering, vol.51, issue.6, pp.1034-1077, 2004.
DOI : 10.1109/TBME.2004.827072

Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby et al., OpenViBE: An Open-Source Software Platform to Design, Test, and Use Brain???Computer Interfaces in Real and Virtual Environments, Presence: Teleoperators and Virtual Environments, vol.2008, issue.3, pp.35-53, 2010.
DOI : 10.1016/j.patrec.2007.10.009

URL : https://hal.archives-ouvertes.fr/hal-00477153

C. Kothe and S. Makeig, BCILAB: a platform for brain???computer interface development, Journal of Neural Engineering, vol.10, issue.5
DOI : 10.1088/1741-2560/10/5/056014

R. Oostenveld, P. Fries, E. Maris, and J. Schoffelen, FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data, Computational Intelligence and Neuroscience, vol.36, issue.3, p.156869, 2011.
DOI : 10.1016/j.neuroimage.2009.02.041

G. Muller-putz, C. Breitwieser, F. Cincotti, R. Leeb, M. Schreuder et al., Jdel R. Tools for brain-computer interaction: A general concept for a hybrid BCI, Front Neuroinform, vol.5, p.30, 2011.

H. Ramoser, J. Wolpaw, and G. Pfurtscheller, EEG-Based Communication: Evaluation of Alternative Signal Prediction Methods - EEG-basierte Kommunikation: Evaluierung alternativer Methoden zur Signalpr??diktion, Biomedizinische Technik/Biomedical Engineering, vol.42, issue.9, pp.226-259, 1997.
DOI : 10.1515/bmte.1997.42.9.226

L. Bianchi, L. Quitadamo, G. Garreffa, G. Cardarilli, and M. Marciani, Performances Evaluation and Optimization of Brain Computer Interface Systems in a Copy Spelling Task, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.15, issue.2, pp.207-223, 2007.
DOI : 10.1109/TNSRE.2007.897024

D. Seno, B. Matteucci, M. Mainardi, and L. , The utility metric: A novel method to assess the overall performance of discrete Brain?Computer interfaces. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol.18, issue.1, pp.20-28, 2010.

K. Laghari and K. Connelly, Toward total quality of experience: A QoE model in a communication ecosystem, IEEE Communications Magazine, vol.50, issue.4, pp.58-65, 2012.
DOI : 10.1109/MCOM.2012.6178834

URL : https://hal.archives-ouvertes.fr/hal-00815913

P. Yuan, X. Gao, A. B. Wang, Y. Bin, G. Gao et al., A study of the existing problems of estimating the information transfer rate in online brain???computer interfaces, Journal of Neural Engineering, vol.10, issue.2, p.26014, 2013.
DOI : 10.1088/1741-2560/10/2/026014

L. Quitadamo, M. Abbafati, G. Cardarilli, D. Mattia, F. Cincotti et al., Evaluation of the performances of different P300 based braincomputer interfaces by means of the efficiency metric, J Neurosci Methods, 2012.

F. Nijboer, J. Clausen, B. Allison, and P. Haselager, The Asilomar Survey: Stakeholders??? Opinions on Ethical Issues Related to Brain-Computer Interfacing, Neuroethics, vol.8, issue.2, pp.541-78, 2013.
DOI : 10.1007/s12152-011-9132-6

M. Billinger, I. Daly, V. Kaiser, J. J. Allison, B. Müller-putz et al., Is It Significant? Guidelines for Reporting BCI Performance, Towards Practical BCIs: Bridging the Gap from Research to Real-World Applications, pp.333-54, 2013.
DOI : 10.1007/978-3-642-29746-5_17

F. Nijboer, J. Clausen, B. Allison, and P. Haselager, Researchers' opinions about ethically sound dissemination of BCI research to the public media, International Journal of Bioelectromagnetism, vol.13, issue.3, pp.108-117, 2011.

G. Schalk and E. Leuthardt, Brain-Computer Interfaces Using Electrocorticographic Signals, IEEE Reviews in Biomedical Engineering, vol.4, pp.140-54, 2011.
DOI : 10.1109/RBME.2011.2172408

K. Miller, E. Leuthardt, G. Schalk, R. Rao, N. Anderson et al., Spectral Changes in Cortical Surface Potentials during Motor Movement, Journal of Neuroscience, vol.27, issue.9, pp.2424-2456, 2007.
DOI : 10.1523/JNEUROSCI.3886-06.2007

W. Wang, J. Collinger, A. Degenhart, E. Tyler-kabara, A. Schwartz et al., An Electrocorticographic Brain Interface in an Individual with Tetraplegia, PLoS ONE, vol.8, issue.Pt 12, p.55344, 2013.
DOI : 10.1371/journal.pone.0055344.s010

P. Kennedy, D. Andreasen, P. Ehirim, B. King, T. Kirby et al., Using human extra-cortical local field potentials to control a switch, Journal of Neural Engineering, vol.1, issue.2, 2004.
DOI : 10.1088/1741-2560/1/2/002

T. Yanagisawa, M. Hirata, Y. Saitoh, H. Kishima, K. Matsushita et al., Electrocorticographic control of a prosthetic arm in paralyzed patients, Annals of Neurology, vol.442, issue.3, pp.353-61, 2012.
DOI : 10.1002/ana.22613

Z. Chao, Y. Nagasaka, and N. Fujii, Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey, Frontiers in Neuroengineering, vol.3, p.3, 2010.
DOI : 10.3389/fneng.2010.00003

H. Hamer, H. Morris, E. Mascha, M. Karafa, W. Bingaman et al., Complications of invasive video-EEG monitoring with subdural grid electrodes, Neurology, vol.58, issue.1, pp.97-103, 2002.
DOI : 10.1212/WNL.58.1.97

K. Fountas and J. Smith, Subdural Electrode-Associated Complications: A 20-Year Experience, Stereotactic and Functional Neurosurgery, vol.85, issue.6, pp.264-72, 2007.
DOI : 10.1159/000107358

J. Van-gompel, G. Worrell, M. Bell, T. Patrick, G. Cascino et al., Intracranial Electroencephalography with Subdural Grid Electrodes: Techniques, Complications, and Outcomes, Neurosurgery, vol.63, issue.3, pp.498505-505, 2008.
DOI : 10.1227/01.NEU.0000324996.37228.F8

M. Morrell and . Rns, Responsive cortical stimulation for the treatment of medically intractable partial epilepsy, Neurology, vol.77, issue.13, pp.1295-304, 2011.
DOI : 10.1212/WNL.0b013e3182302056

J. Speer, R. Kuhn, and . Fda, Advisory Panel Recommends Approval of the NeuroPace RNS® System for Medically Refractory Epilepsy [Internet] Available from, 2013.

T. Valderrama, A. Oostenveld, R. Vansteensel, M. Huiskamp, G. Ramsey et al., Gain of the human dura in vivo and its effects on invasive brain signal feature detection, Journal of Neuroscience Methods, vol.187, issue.2, pp.270-279, 2010.
DOI : 10.1016/j.jneumeth.2010.01.019

B. Voytek, L. Secundo, A. Bidet-caulet, D. Scabini, S. Stiver et al., Hemicraniectomy: A New Model for Human Electrophysiology with High Spatio-temporal Resolution, Journal of Cognitive Neuroscience, vol.10, issue.11, pp.2491-502, 2010.
DOI : 10.1016/j.neuron.2008.03.027

R. Flint, Z. Wright, M. Scheid, and M. Slutzky, Long term, stable brain machine interface performance using local field potentials and multiunit spikes, Journal of Neural Engineering, vol.10, issue.5, p.056005056005, 2013.
DOI : 10.1088/1741-2560/10/5/056005

A. Rouse, J. Williams, J. Wheeler, and D. Moran, Cortical Adaptation to a Chronic Micro-Electrocorticographic Brain Computer Interface, Journal of Neuroscience, vol.33, issue.4, pp.1326-1356, 2013.
DOI : 10.1523/JNEUROSCI.0271-12.2013

D. Markowitz, Y. Wong, C. Gray, and B. Pesaran, Optimizing the Decoding of Movement Goals from Local Field Potentials in Macaque Cortex, Journal of Neuroscience, vol.31, issue.50, 2011.
DOI : 10.1523/JNEUROSCI.4165-11.2011

K. Bouchard, N. Mesgarani, K. Johnson, and E. Chang, Functional organization of human sensorimotor cortex for speech articulation, Nature, vol.20, issue.7441, pp.327-359, 2013.
DOI : 10.1038/nature11911

E. Chang, J. Rieger, K. Johnson, M. Berger, N. Barbaro et al., Categorical speech representation in human superior temporal gyrus, Nature Neuroscience, vol.62, issue.11, 2010.
DOI : 10.1126/science.210.4468.390

A. Flinker, E. Chang, N. Barbaro, M. Berger, and R. Knight, Sub-centimeter language organization in the human temporal lobe, Brain and Language, vol.117, issue.3, pp.103-112, 2011.
DOI : 10.1016/j.bandl.2010.09.009

M. Slutzky, L. Jordan, T. Krieg, M. Chen, D. Mogul et al., Optimal spacing of surface electrode arrays for brain???machine interface applications, Journal of Neural Engineering, vol.7, issue.2, p.26004, 2010.
DOI : 10.1088/1741-2560/7/2/026004

M. Treder, N. Schmidt, and B. Blankertz, Gaze-independent brain???computer interfaces based on covert attention and feature attention, Journal of Neural Engineering, vol.8, issue.6, 2011.
DOI : 10.1088/1741-2560/8/6/066003

L. Tonin, R. Leeb, R. Del, and J. Millan, Time-dependent approach for single trial classification of covert visuospatial attention, Journal of Neural Engineering, vol.9, issue.4, 2012.
DOI : 10.1088/1741-2560/9/4/045011

P. Sajda, E. Pohlmeyer, J. Wang, L. Parra, C. Christoforou et al., In a Blink of an Eye and a Switch of a Transistor: Cortically Coupled Computer Vision, Proceedings of the IEEE, pp.462-78, 2010.
DOI : 10.1109/JPROC.2009.2038406

J. Kohlmorgen, G. Dornhege, M. Braun, B. Blankertz, K. Müller et al., Improving human performance in a real operating environment through real-time mental workload detection, Toward Brain- Computer Interfacing, pp.409-431, 2007.

D. Gopher, E. Donchin, K. Boff, L. Kaufman, and J. Thomas, Workload: An Examination of the Concept, Handbook of Perception and Human Performance Cognitive Processes and Performance, 1986.

E. Sirevaag, A. Kramer, M. Coles, and E. Donchin, Resource reciprocity: An event-related brain potentials analysis, Acta Psychologica, vol.70, issue.1, pp.77-97, 1989.
DOI : 10.1016/0001-6918(89)90061-9

L. Farwell and E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials, Electroencephalography and Clinical Neurophysiology, vol.70, issue.6, 1988.
DOI : 10.1016/0013-4694(88)90149-6

B. Libet, C. Gleason, E. Wright, and D. Pearl, TIME OF CONSCIOUS INTENTION TO ACT IN RELATION TO ONSET OF CEREBRAL ACTIVITY (READINESS-POTENTIAL), Brain, vol.106, issue.3, pp.623-665, 1983.
DOI : 10.1093/brain/106.3.623

E. Lew, R. Chavarriaga, S. Silvoni, M. Jdel, and R. , Detection of self-paced reaching movement intention from EEG signals, Frontiers in Neuroengineering, vol.5, p.13, 2012.
DOI : 10.3389/fneng.2012.00013

O. Bai, V. Rathi, P. Lin, D. Huang, H. Battapady et al., Prediction of human voluntary movement before it occurs, Clinical Neurophysiology, vol.122, issue.2, pp.364-72, 2011.
DOI : 10.1016/j.clinph.2010.07.010

P. Haggard, Human volition: towards a neuroscience of will, Nature Reviews Neuroscience, vol.132, issue.12, 2008.
DOI : 10.1038/nrn2497

A. Muralidharan, C. J. Taylor, and D. , Extracting Attempted Hand Movements from EEGs in People with Complete Hand Paralysis Following Stroke, Frontiers in Neuroscience, vol.5, p.39, 2011.
DOI : 10.3389/fnins.2011.00039

Z. Khaliliardali, R. Chavarriaga, A. Gheorghe, L. , M. Jdel et al., Detection of anticipatory brain potentials during car driving, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.3829-3861, 2012.
DOI : 10.1109/EMBC.2012.6346802

R. Chavarriaga, M. Jdel, and R. , Learning From EEG Error-Related Potentials in Noninvasive Brain-Computer Interfaces, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.18, issue.4, 2010.
DOI : 10.1109/TNSRE.2010.2053387

A. Llera, M. Van-gerven, V. Gomez, O. Jensen, and H. Kappen, On the use of interaction error potentials for adaptive brain computer interfaces, Neural Networks, vol.24, issue.10, 2011.
DOI : 10.1016/j.neunet.2011.05.006

T. Milekovic, T. Ball, A. Schulze-bonhage, A. Aertsen, and C. Mehring, Error-related electrocorticographic activity in humans during continuous movements, Journal of Neural Engineering, vol.9, issue.2, p.26007, 2012.
DOI : 10.1088/1741-2560/9/2/026007

I. Iturrate, R. Chavarriaga, L. Montesano, J. Minguez, M. Jdel et al., Latency correction of error potentials between different experiments reduces calibration time for singletrial classification, Conf Proc IEEE Eng Med Biol Soc, vol.2012, pp.3288-91, 2012.

R. Chavarriaga, X. Perrin, R. Siegwart, M. Jdel, and R. , Anticipation- and error-related EEG signals during realistic human-machine interaction: A study on visual and tactile feedback, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.6723-6729, 2012.
DOI : 10.1109/EMBC.2012.6347537

P. Ferrez and M. Jd, Simultaneous real-time detection of motor imagery and error-related potentials for improved BCI accuracy, Proceedings 4th Internat BCI Workshop, 2008.

M. Spuler, M. Bensch, S. Kleih, W. Rosenstiel, M. Bogdan et al., Online use of errorrelated potentials in healthy users and people with severe motor impairment increases performance of a P300-BCI, Clin Neurophysiol. 2012, vol.123, issue.7, pp.1328-1365

B. Mahmoudi and J. Sanchez, A symbiotic brain-machine interface through value-based decision making. PLoS One, p.14760, 2011.

S. Roset, H. Gonzalez, and J. Sanchez, Development of an EEG based reinforcement learning brain-computer interface system for rehabilitation, Conf Proc IEEE Eng Med Biol Soc, pp.1563-1569, 2013.

S. Makeig, K. Gramann, T. Jung, T. Sejnowski, and H. Poizner, Linking brain, mind and behavior, International Journal of Psychophysiology, vol.73, issue.2, pp.95-100, 2009.
DOI : 10.1016/j.ijpsycho.2008.11.008

G. Pfurtscheller, B. Allison, C. Brunner, G. Bauernfeind, T. Solis-escalante et al., The hybrid BCI, Frontiers in Neuroscience, vol.4, p.30, 2010.
DOI : 10.3389/fnpro.2010.00003

H. Zhang, R. Chavarriaga, M. Goel, L. Gheorghe, M. Jdel et al., Improved recognition of error related potentials through the use of brain connectivity features, Conf Proc IEEE Eng Med Biol Soc, vol.2012, pp.6740-6743, 2012.

N. Evans and O. Blanke, Shared electrophysiology mechanisms of body ownership and motor imagery, NeuroImage, vol.64, pp.216-244, 2013.
DOI : 10.1016/j.neuroimage.2012.09.027

J. Wolpaw and E. Wolpaw, Brain-computer interfaces: principles and practice, 2012.

E. Friedrich, C. Neuper, and R. Scherer, Whatever Works: A Systematic User-Centered Training Protocol to Optimize Brain-Computer Interfacing Individually, PLoS ONE, vol.127, issue.9, p.76214, 2013.
DOI : 10.1371/journal.pone.0076214.t002

J. Faller, C. Vidaurre, T. Solis-escalante, C. Neuper, and R. Scherer, Autocalibration and Recurrent Adaptation: Towards a Plug and Play Online ERD-BCI, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.20, issue.3, pp.313-322
DOI : 10.1109/TNSRE.2012.2189584

J. Fruitet, A. Carpentier, R. Munos, and M. Clerc, Automatic motor task selection via a bandit algorithm for a brain-controlled button, Journal of Neural Engineering, vol.10, issue.1, 2013.
DOI : 10.1088/1741-2560/10/1/016012

URL : https://hal.archives-ouvertes.fr/inria-00624686

A. Lecuyer, L. George, and M. Marchal, Toward Adaptive VR Simulators Combining Visual, Haptic, and Brain-Computer Interfaces, IEEE Computer Graphics and Applications, vol.33, issue.5, pp.18-23, 2013.
DOI : 10.1109/MCG.2013.80

URL : https://hal.archives-ouvertes.fr/hal-00934846

F. Velasco-Álvarez, R. Ron-angevin, L. Da-silva-sauer, and S. Sancha-ros, Audio-cued motor imagery-based brain???computer interface: Navigation through virtual and real environments, Neurocomputing, vol.121, 2013.
DOI : 10.1016/j.neucom.2012.11.038

R. Scherer, M. Proll, A. B. Muller-putz, and G. , New input modalities for modern game design and virtual embodiment, 2012 IEEE Virtual Reality (VR), pp.163-167, 2012.
DOI : 10.1109/VR.2012.6180932

M. Grosse-wentrup and B. Scholkopf, High gamma-power predicts performance in sensorimotor-rhythm brain???computer interfaces, Journal of Neural Engineering, vol.9, issue.4, 2012.
DOI : 10.1088/1741-2560/9/4/046001

J. Wander, T. Blakely, K. Miller, K. Weaver, L. Johnson et al., Distributed cortical adaptation during learning of a brain-computer interface task, Proceedings of the National Academy of Sciences, vol.110, issue.26, pp.10818-10841, 2013.
DOI : 10.1073/pnas.1221127110

F. Lotte, F. Larrue, and C. Muhl, Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design, Frontiers in Human Neuroscience, vol.7, p.568, 2013.
DOI : 10.3389/fnhum.2013.00568

URL : https://hal.archives-ouvertes.fr/hal-00862716

R. Rupp and G. Müller-putz, BCI-Controlled Grasp Neuroprosthesis in High Spinal Cord Injury, Neurorehabilitation, pp.1255-1264, 2012.
DOI : 10.1007/978-3-642-34546-3_209

R. Rupp, A. Kreilinger, M. Rohm, V. Kaiser, and G. Muller-putz, Development of a noninvasive , multifunctional grasp neuroprosthesis and its evaluation in an individual with a high spinal cord injury, Conf Proc IEEE Eng Med Biol Soc, vol.2012, pp.1835-1843, 2012.

A. Kreilinger, V. Kaiser, C. Breitwieser, J. Williamson, C. Neuper et al., Switching between Manual Control and Brain-Computer Interface Using Long Term and Short Term Quality Measures, Frontiers in Neuroscience, vol.5, p.147, 2011.
DOI : 10.3389/fnins.2011.00147

G. Muller-putz, R. Scherer, G. Pfurtscheller, and R. Rupp, EEG-based neuroprosthesis control: A step towards clinical practice, Neuroscience Letters, vol.382, issue.1-2, pp.169-74, 2005.
DOI : 10.1016/j.neulet.2005.03.021

G. Pfurtscheller, G. Muller, J. Pfurtscheller, H. Gerner, and R. Rupp, ???Thought??? ??? control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia, Neuroscience Letters, vol.351, issue.1
DOI : 10.1016/S0304-3940(03)00947-9

M. Rohm, M. Schneiders, C. Muller, A. Kreilinger, V. Kaiser et al., Hybrid brain???computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury, Artificial Intelligence in Medicine, vol.59, issue.2, pp.133-175, 2013.
DOI : 10.1016/j.artmed.2013.07.004

G. Muller-putz, R. Scherer, G. Pfurtscheller, and R. Rupp, Brain-computer interfaces for control of neuroprostheses: From synchronous to asynchronous mode of operation

A. Kreilinger, V. Kaiser, M. Rohm, R. Leeb, R. Rupp et al., Neuroprosthesis Control via Non-invasive Hybrid Brain-Computer Interface

M. Rohm, R. Rupp, M. Schneiders, A. Kreilinger, and G. Müller-putz, Hybrid braincomputer interfaces for control of neuroprosthetic systems for restoration of upper limb functions in high spinal cord injured individuals, 2013.

N. Hill and B. Scholkopf, An online brain???computer interface based on shifting attention to concurrent streams of auditory stimuli, Journal of Neural Engineering, vol.9, issue.2, 2012.
DOI : 10.1088/1741-2560/9/2/026011

J. Hohne, M. Schreuder, B. Blankertz, and M. Tangermann, A novel 9-class auditory ERP paradigm driving a predictive text entry system, Frontiers in Neuroscience, vol.5, p.99, 2011.
DOI : 10.3389/fnins.2011.00099

A. Kubler, A. Furdea, S. Halder, E. Hammer, F. Nijboer et al., A Brain-Computer Interface Controlled Auditory Event-Related Potential (P300) Spelling System for Locked-In Patients, Annals of the New York Academy of Sciences, vol.313, issue.1, pp.90-100, 2009.
DOI : 10.1111/j.1749-6632.2008.04122.x

F. Nijboer, A. Furdea, I. Gunst, J. Mellinger, D. Mcfarland et al., An auditory brain???computer interface (BCI), Journal of Neuroscience Methods, vol.167, issue.1, pp.43-50, 2008.
DOI : 10.1016/j.jneumeth.2007.02.009

A. Riccio, D. Mattia, L. Simione, M. Olivetti, and F. Cincotti, Eye-gaze independent EEGbased brain-computer interfaces for communication, J Neural Eng, 2012.

M. Schreuder, T. Rost, and M. Tangermann, Listen, You are Writing! Speeding up Online Spelling with a Dynamic Auditory BCI, Frontiers in Neuroscience, vol.5, p.112, 2011.
DOI : 10.3389/fnins.2011.00112

D. Vico-fallani, F. Pichiorri, F. Morone, G. Molinari, M. Babiloni et al., Multiscale topological properties of functional brain networks during motor imagery after stroke, NeuroImage, vol.83, pp.438-487, 2013.
DOI : 10.1016/j.neuroimage.2013.06.039

URL : https://hal.archives-ouvertes.fr/hal-00841262

S. Soekadar, M. Witkowski, E. Cossio, N. Birbaumer, S. Robinson et al., In vivo assessment of human brain oscillations during application of transcranial electric currents, Nature Communications, vol.54, p.2032, 2013.
DOI : 10.1155/2011/156869

A. Ramos-murguialday, D. Broetz, M. Rea, L. Laer, O. Yilmaz et al., Brain-machine interface in chronic stroke rehabilitation: A controlled study, Annals of Neurology, vol.10, issue.1, pp.100-108, 2013.
DOI : 10.1002/ana.23879

W. Cho, C. Vidaurre, U. Hoffmann, N. Birbaumer, and A. Ramos-murguialday, Afferent and efferent activity control in the design of brain computer interfaces for motor rehabilitation, Conf Proc IEEE Eng Med Biol Soc, vol.2011, pp.7310-7315, 2011.

Y. Hashimoto, J. Ushiba, A. Kimura, M. Liu, and Y. Tomita, Change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy, BMC Neuroscience, vol.11, issue.1, p.117, 2010.
DOI : 10.1186/1471-2202-11-117

T. Kasahara, K. Terasaki, Y. Ogawa, J. Ushiba, H. Aramaki et al., The correlation between motor impairments and event-related desynchronization during motor imagery in ALS patients, BMC Neuroscience, vol.13, issue.1, pp.662202-662215, 2012.
DOI : 10.1109/TAU.1967.1161901

Y. Kasashima, T. Fujiwara, Y. Matsushika, T. Tsuji, K. Hase et al., Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation (tDCS) in patients with chronic hemiparetic stroke, Experimental Brain Research, vol.15, issue.3, pp.263-271, 2012.
DOI : 10.1007/s00221-012-3166-9

J. Matsumoto, T. Fujiwara, O. Takahashi, M. Liu, A. Kimura et al., Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation, Journal of NeuroEngineering and Rehabilitation, vol.7, issue.1, pp.270003-270010, 2010.
DOI : 10.1186/1743-0003-7-27

T. Ono, A. Kimura, and J. Ushiba, Daily training with realistic visual feedback improves reproducibility of event-related desynchronisation following hand motor imagery, Clinical Neurophysiology, vol.124, issue.9
DOI : 10.1016/j.clinph.2013.03.006

R. Ortner, D. Irimia, J. Scharinger, and C. Guger, A motor imagery based brain-computer interface for stroke rehabilitation, Stud Health Technol Inform, vol.181, pp.319-342, 2012.

K. Shindo, K. Kawashima, J. Ushiba, N. Ota, M. Ito et al., Effects of neurofeedback training with an electroencephalogram-based Brain????????Computer Interface for hand paralysis in patients with chronic stroke: A preliminary case series study, Journal of Rehabilitation Medicine, vol.43, issue.10, pp.951-958, 2011.
DOI : 10.2340/16501977-0859

M. Takemi, Y. Masakado, M. Liu, and J. Ushiba, Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex, Journal of Neurophysiology, vol.110, issue.5, pp.1158-66, 2013.
DOI : 10.1152/jn.01092.2012

T. Tohyama, T. Fujiwara, J. Matsumoto, K. Honaga, J. Ushiba et al., Modulation of Event-related Desynchronization duringMotor Imagery with Transcranial Direct Current Stimulationin a Patient with Severe Hemiparetic Stroke: A Case Report, The Keio Journal of Medicine, vol.60, issue.4, pp.114-122, 2011.
DOI : 10.2302/kjm.60.114

T. Yamamoto, Y. Katayama, J. Ushiba, H. Yoshino, T. Obuchi et al., On-demand control system for deep brain stimulation for treatment of intention tremor. Neuromodulation, p.230, 2013.

Y. Hashimoto and J. Ushiba, EEG-based classification of imaginary left and right foot movements using beta rebound, Clinical Neurophysiology, vol.124, issue.11, pp.2153-60, 2013.
DOI : 10.1016/j.clinph.2013.05.006

R. Sainburg, M. Ghilardi, H. Poizner, and C. Ghez, Control of limb dynamics in normal subjects and patients without proprioception, J Neurophysiol. Feb, vol.73, issue.2, pp.820-855, 1995.

J. Monzee, Y. Lamarre, and A. Smith, The Effects of Digital Anesthesia on Force Control Using a Precision Grip, Journal of Neurophysiology, vol.89, issue.2, pp.672-83, 2003.
DOI : 10.1152/jn.00434.2001

D. Weber, B. London, J. Hokanson, C. Ayers, R. Gaunt et al., Limb-State Information Encoded by Peripheral and Central Somatosensory Neurons: Implications for an Afferent Interface, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.19, issue.5, pp.501-514, 2011.
DOI : 10.1109/TNSRE.2011.2163145

D. Weber, R. Friesen, and L. Miller, Interfacing the Somatosensory System to Restore Touch and Proprioception: Essential Considerations, Journal of Motor Behavior, vol.23, issue.6, pp.403-421, 2012.
DOI : 10.1126/science.1067996

A. Koivuniemi and K. Otto, The depth, waveform and pulse rate for electrical microstimulation of the auditory cortex, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.2489-92, 2012.
DOI : 10.1109/EMBC.2012.6346469

M. Schiefer, D. Tan, R. Anderson, M. Keith, M. Schmitt et al., Restoring sensation in amputees with nerve cuff electrodes, BMES Annual Conference ; 20132013. p. (Platform)

G. Tabot, J. Dammann, J. Berg, F. Tenore, J. Boback et al., Restoring the sense of touch with a prosthetic hand through a brain interface, Proceedings of the National Academy of Sciences, vol.110, issue.45
DOI : 10.1073/pnas.1221113110

T. T. , R. Miller, and L. , Multi-electrode stimulation in somatosensory area 2 induces a natural sensation of limb movement, Annual meeting, pp.835-838, 20132013.

M. Dadarlat, O. Doherty, J. Sabes, and P. , Multisensory integration of vision and intracortical microstimulation for sensory substitution and augmentation, Annual meeting, pp.292-212, 20122012.

L. Hochberg, D. Bacher, B. Jarosiewicz, N. Masse, J. Simeral et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm, Nature, vol.105, issue.7398, pp.372-377, 2012.
DOI : 10.1038/nature11076

R. Kwok, Neuroprosthetics: Once more, with feeling, Nature, vol.497, issue.7448, pp.176-184, 2009.
DOI : 10.1038/497176a

S. Raspopovic, M. Capogrosso, J. Badia, X. Navarro, and S. Micera, Experimental Validation of a Hybrid Computational Model for Selective Stimulation Using Transverse Intrafascicular Multichannel Electrodes, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.20, issue.3, 2012.
DOI : 10.1109/TNSRE.2012.2189021

J. Berg, J. Dammann, F. Tenore, G. Tabot, J. Boback et al., Behavioral Demonstration of a Somatosensory Neuroprosthesis, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.21, issue.3, pp.500-507, 2013.
DOI : 10.1109/TNSRE.2013.2244616

R. Chavarriaga, A. Biasiucci, A. Molina, R. Leeb, V. Soto-león et al., tDCS Modulates Motor Imagery-Related BCI Features, Converging Clinical and Engineering Research on Neurorehabilitation, pp.647-51, 2013.
DOI : 10.1007/978-3-642-34546-3_105

K. Ang, C. Guan, K. Phua, C. Wang, I. Teh et al., Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation, Conf Proc IEEE Eng Med Biol Soc, vol.2012, pp.4128-4159, 2012.

R. Ortner, J. Rodriguez, and C. Guger, A tactile P300 brain-computer interface Austria: g.tec Medical Engineering GmbH, 2012.

H. Mori, Y. Matsumoto, S. Makino, V. Kryssanov, and T. Rutkowski, Vibrotactile stimulus frequency optimization for the haptic BCI prototype, The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems, pp.2150-2153, 2012.
DOI : 10.1109/SCIS-ISIS.2012.6505372

H. Mori, Y. Matsumoto, V. Kryssanov, E. Cooper, H. Ogawa et al., Multi-command Tactile Brain Computer Interface: A Feasibility Study, Haptic and Audio Interaction Design 2013, pp.50-59, 2013.
DOI : 10.1007/978-3-642-41068-0_6

T. Rutkowski, H. Mori, S. Makino, and K. Mori, Novel spatial tactile and bone-conduction auditory brain computer interface, Neuroscience Abstracts, 2013.

L. Naci, M. Monti, D. Cruse, A. Kubler, B. Sorger et al., Brain-computer interfaces for communication with nonresponsive patients, Annals of Neurology, vol.177, issue.suppl
DOI : 10.1002/ana.23656

A. Kubler and B. Kotchoubey, Brain???computer interfaces in the continuum of consciousness, Current Opinion in Neurology, vol.20, issue.6, pp.643-652, 2007.
DOI : 10.1097/WCO.0b013e3282f14782

C. Pokorny, D. Klobassa, G. Pichler, H. Erlbeck, R. Real et al., The auditory P300-based single-switch brain???computer interface: Paradigm transition from healthy subjects to minimally conscious patients, Artificial Intelligence in Medicine, vol.59, issue.2, 2013.
DOI : 10.1016/j.artmed.2013.07.003

G. Müller-putz, C. Pokorny, D. Klobassa, and P. Horki, A SINGLE-SWITCH BCI BASED ON PASSIVE AND IMAGINED MOVEMENTS: TOWARD RESTORING COMMUNICATION IN MINIMALLY CONSCIOUS PATIENTS, International Journal of Neural Systems, vol.23, issue.02, 2013.
DOI : 10.1142/S0129065712500372

D. Coyle, A. Carroll, J. Stow, A. Mccann, A. A. Mcelligott et al., Enabling Control in the Minimally Conscious State in a Single Session with a Three Channel BCI, 1st International Decoder Workshop, pp.1-4, 20122012.

D. Coyle, Á. Carroll, J. Stow, K. Mccreadie, and J. Mcelligott, Visual and Stereo Audio Sensorimotor Rhythm Feedback in the Minimally Conscious State, Proceedings of the Fifth International Brain-Computer Interface Meeting, pp.38-47, 20132013.

M. Risetti, R. Formisano, J. Toppi, L. Quitadamo, L. Bianchi et al., On ERPs detection in disorders of consciousness rehabilitation, Frontiers in Human Neuroscience, vol.7
DOI : 10.3389/fnhum.2013.00775

D. Lesenfants, N. Partoune, A. Soddu, R. Lehembre, G. Muller-putz et al., Design of a novel covert SSVEP-based BCI, Proceedings of the 5th International Brain-Computer Interface Conference, 2011.

D. Lesenfants, D. Habbal, Z. Lugo, P. Lebeau, P. Horki et al., Independent SSVEP-based brain-computer interface in locked-in patients, Journal of Neural Engineering, p.2014

O. Lovaas, Behavioral treatment and normal educational and intellectual functioning in young autistic children., Journal of Consulting and Clinical Psychology, vol.55, issue.1, pp.3-9, 1987.
DOI : 10.1037/0022-006X.55.1.3

J. Mceachin, T. Smith, and O. Lovaas, Long-term outcome for children with autism who received early intensive behavioral treatment, Am J Ment Retard, 1993.

L. Oberman, V. Ramachandran, and J. Pineda, Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis, Neuropsychologia, vol.46, issue.5, pp.1558-65, 2008.
DOI : 10.1016/j.neuropsychologia.2008.01.010

J. Pineda, A. Juavinett, and M. Datko, Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism. Med Hypotheses, 2012.

J. Townsend, M. Westerfield, E. Leaver, S. Makeig, T. Jung et al., Event-related brain response abnormalities in autism: evidence for impaired cerebello-frontal spatial attention networks, Cognitive Brain Research, vol.11, issue.1, 2001.
DOI : 10.1016/S0926-6410(00)00072-0

J. Pineda, D. Brang, E. Hecht, L. Edwards, S. Carey et al., Positive behavioral and electrophysiological changes following neurofeedback training in children with autism, Research in Autism Spectrum Disorders, vol.2, issue.3, pp.557-81, 2008.
DOI : 10.1016/j.rasd.2007.12.003

L. Liao, C. Lin, K. Mcdowell, A. Wickenden, K. Gramann et al., Biosensor technologies for augmented Brain?Computer interfaces in the next decades, Proceedings of the IEEE, vol.2012, pp.18-9219

J. Rapela, T. Lin, M. Westerfield, T. Jung, and T. J. , Assisting autistic children with wireless EOG technology, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.3504-3510, 2012.
DOI : 10.1109/EMBC.2012.6346721

T. Jung, S. Makeig, M. Westerfield, T. J. Courchesne, E. Sejnowski et al., Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects, Clinical Neurophysiology, vol.111, issue.10, pp.1745-58, 2000.
DOI : 10.1016/S1388-2457(00)00386-2

J. Gwin, K. Gramann, S. Makeig, and D. Ferris, Removal of movement artifact from highdensity EEG recorded during walking and running, J Neurophysiol, 2010.

Y. Chi, Y. Wang, Y. Wang, C. Maier, T. Jung et al., Dry and Noncontact EEG Sensors for Mobile Brain???Computer Interfaces, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.20, issue.2, pp.228-263, 2012.
DOI : 10.1109/TNSRE.2011.2174652

R. Matthews, N. Mcdonald, H. Anumula, J. Woodward, P. Turner et al., Novel Hybrid Bioelectrodes for Ambulatory Zero-Prep EEG Measurements Using Multi-channel Wireless EEG System, Foundations of Augmented Cognition Lecture Notes in Computer Science, vol.4565, pp.137-183, 2007.
DOI : 10.1007/978-3-540-73216-7_16

L. Liao, I. Wang, S. Chen, J. Chang, and C. Lin, Design, Fabrication and Experimental Validation of a Novel Dry-Contact Sensor for Measuring Electroencephalography Signals without Skin Preparation, Sensors, vol.11, issue.12, pp.5819-5853, 2011.
DOI : 10.3390/s110605819

C. Guger, G. Krausz, B. Allison, and G. Edlinger, Comparison of Dry and Gel Based Electrodes for P300 Brain???Computer Interfaces, Frontiers in Neuroscience, vol.6, p.60, 2012.
DOI : 10.3389/fnins.2012.00060

O. Ryynanen, J. Hyttinen, P. Laarne, and J. Malmivuo, Effect of Electrode Density and Measurement Noise on the Spatial Resolution of Cortical Potential Distribution, IEEE Transactions on Biomedical Engineering, vol.51, issue.9, pp.1547-54, 2004.
DOI : 10.1109/TBME.2004.828036

E. Coffey, A. Brouwer, E. Wilschut, and J. Van-erp, Brain???machine interfaces in space: Using spontaneous rather than intentionally generated brain signals, Acta Astronautica, vol.67, issue.1-2, pp.1-11, 2010.
DOI : 10.1016/j.actaastro.2009.12.016

T. Zander, C. Kothe, S. Welke, and M. Roetting, Enhancing Human-Machine systems with secondary input from passive Brain-Computer interfaces, Proceedings from the 4th International BCI Workshop and Training Course, 2008.

T. Zander and C. Kothe, Towards passive brain???computer interfaces: applying brain???computer interface technology to human???machine systems in general, Journal of Neural Engineering, vol.8, issue.2, p.25005, 2011.
DOI : 10.1088/1741-2560/8/2/025005

A. Brouwer, J. Van-erp, D. Heylen, O. Jensen, and M. Poel, Effortless Passive BCIs for Healthy Users, UAHCI/HCII 2013, Part I, pp.615-637, 2013.
DOI : 10.1007/978-3-642-39188-0_66

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Hancock, N. Meshkati, and M. Robertson, Physiological reflections of mental workload, Aviat Space Environ Med, vol.56, issue.11, pp.1110-1114, 1985.

L. Keeler, A Method for Detecting Deception, The American Journal of Police Science, vol.1, issue.1, pp.38-51, 1930.
DOI : 10.2307/1147254

P. Kindermans and B. Schrauwen, Dynamic Stopping in a Calibration-less P300 Speller

A. Brouwer, T. Zander, and B. Van-erp-jan, Using neurophysiological signals that reflect cognitive or affective state, 1528.
DOI : 10.3389/978-2-88919-613-5