1-local 33/24-competitive Algorithm for Multicoloring Hexagonal Graphs

Abstract : In the frequency allocation problem, we are given a cellular telephone network whose geographical coverage area is divided into cells, where phone calls are serviced by assigned frequencies, so that none of the pairs of calls emanating from the same or neighboring cells is assigned the same frequency. The problem is to use the frequencies efficiently, i.e. minimize the span of frequencies used. The frequency allocation problem can be regarded as a multicoloring problem on a weighted hexagonal graph, where each vertex knows its position in the graph. We present a 1-local 33/24-competitive distributed algorithm for multicoloring a hexagonal graph, thereby improving the previous 1-local 7/5-competitive algorithm.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2013, Vol. 15 no. 3 (3), pp.127-138
Liste complète des métadonnées

https://hal.inria.fr/hal-00966383
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mercredi 26 mars 2014 - 15:16:33
Dernière modification le : jeudi 7 septembre 2017 - 01:03:41
Document(s) archivé(s) le : jeudi 26 juin 2014 - 11:32:22

Fichier

2147-8428-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00966383, version 1

Collections

Citation

Rafal Witkowski, Janez Žerovnik. 1-local 33/24-competitive Algorithm for Multicoloring Hexagonal Graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2013, Vol. 15 no. 3 (3), pp.127-138. 〈hal-00966383〉

Partager

Métriques

Consultations de la notice

268

Téléchargements de fichiers

228